МІНІСТЕРСТВО ПАЛИВА ТА ЕНЕРГЕТИКИ УКРАЇНИ

СОУ-Н МПЕ 40.1.20.576:2005

НОРМАТИВНИЙ ДОКУМЕНТ
НАСТАНОВА

МЕТОДИЧНІ ВКАЗІВКИ З ОБЛІКУ ТА АНАЛІЗУ
В ЕНЕРГОСИСТЕМАХ ТЕХНІЧНОГО СТАНУ
РОЗПОДІЛЬНИХ МЕРЕЗ НАПРУГОЮ 0,38–20 КВ
З ПОВІТРЯНИМИ ЛІНІЯМИ ЕЛЕКТРОПЕРЕДАЧІ

Видання офіційне

ОБ'ЄДНАННЯ ЕНЕРГЕТИЧНИХ ПІДПРИЄМСТВ
«ГАЛУЗЕВИЙ РЕЗЕРВНО-ІНВЕСТИЦІЙНИЙ ФОНД РОЗВИТКУ ЕНЕРГЕТИКИ»

Київ 2005
ПЕРЕДМОВА

1 ЗАМОВЛЕНО: Об'єднанням енергетичних підприємств «Галузевий резервно-інвестиційний фонд розвитку енергетики (ОЕП «ГРІФРЕ»)

2 РОЗРОБЛЕНО: ДП «ДонОРГРЕС», Мінпаливенерго України

3 РОЗРОБНИКИ: О.А. Потребич, В.П. Ключко, Г.М. Катренко

4 ВНЕСЕНО: Управлінням електричних мереж, В.І. Скрипченко

5 УЗГОДЖЕНО: Заступником Міністра палива та енергетики України, О.Д. Светелік
Залученням електроенергетики Мінпаливенноерго України, Ю.І. Улітіч
ОЕП «ГРІФРЕ», Г.П. Хайдурова

6 ЗАТВЕРДЖЕНО ТА НАДАНО ЧИНОСТЬ: Міністерством палива та енергетики України, наказ № 60 від 3 лютого 2005 р.

7 НА ЗАМІНУ: 1. РД 34.20.573 Указания по учету и анализу в энергосистемах технического состояния распределительных сетей напряжением 0,38—20 кВ с воздушными линиями электропередач (М.: СПО Союзтехэнерго, 1986).
2. РД 34.20.583—91 Методические указания по комплексной качественной оценке технического состояния распределительных сетей напряжением 0,38—20 кВ с воздушными линиями электропередач (М.: СПО ОРГРЭС, 1993)

8 СТРОК ПЕРЕВІРЕННЯ: 2010 рік

© ОЕП «ГРІФРЕ», 2005

Право власності на цей документ належить ОЕП «ГРІФРЕ».
Відтворювати, тиражувати і розповсюджувати його повністю чи частково на будь-яких носіях інформації без офіційного дозволу заборонено.
МИНИСТЕРСТВО ПАЛИВА ТА ЕНЕРГЕТИКИ УКРАЇНИ

НАКАЗ

03 лютого 2005 року
м. Київ
№ 60

Про Про затвердження та введення в дію нормативного документа «Методичні вказівки з обліку та аналізу в енерgosистемах технічного стану і розподільних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі»

З метою забезпечення єдиних критеріїв до визначення комплексної кількісної та якісної оцінки технічного стану повітряних мереж 0,38—20 кВ і трансформаторних підстанцій 6—20 кВ, для упорядкування організації технічного обслуговування розподільних мереж напругою 0,38—20 кВ на підприємствах електроенергетичної галузі

НАКАЗУЮ:

1. Затвердити та ввести в дію нормативний документ «Методичні вказівки з обліку та аналізу в енеркосистемах технічного стану розподільних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі» (далі — Методичні вказівки, додаються), який набирає чинності через 60 днів з дати підписання цього наказу.

2. Госпрозрахунковому підрозділу «Науково-інженерний енергосервісний центр» інституту «Укрсільенергорпроект» (Білоусов В.І.) внести Методичні вказівки до реєстру і комп'ютерного банку даних чинних нормативних документів Мінпаливенерго.

3. Об'єднанню енергетичних підприємств «Галаузевий резервно інвестиційний фонд розвитку енергетики» (Хайдурова Г.П.) забезпечити видання і надходження необхідної кількості примірників Методичних вказівок енергетичним компаніям та підприємствам відповідно до їх замовлень та фактичної оплати.
4. З набранням чинності Методичних вказівок визнати такими, що не застосовуються на території України, РД 34.20.573 «Указания по учету и анализу в энергосистемах технического состояния распределительных сетей 0,38—20 кВ с воздушными линиями электропередач» та РД 3420.583—91, затверджені Головним технічним управлінням Міненерго СРСР 20.12.85, «Методические указания по комплексной качественной оценке технического состояния распределительных сетей напряжением 0,38—20 кВ с воздушными линиями электропередачи», затверджені Головним технічним управлінням Міненерго СРСР 24.06.91.

5. Контроль за виконанням цього наказу покласти на заступника Міністра Светеліка О.Д.

Перший заступник Міністра О.М.ШЕБЕРСТОВ
ЗМІСТ

1 Сфера застосування ... 1
2 Нормативні посилання .. 2
3 Терміни та визначення поняття .. 3
4 Познаки та скорочення ... 6
5 Загальні положення .. 7
 5.1 Загальна частина ... 7
 5.2 Облік і оцінка технічного стану об’єктів 7
 5.3 Порядок обліку якісної оцінки об’єктів 9
6 Комплексна якісна оцінка технічного стану об’єктів електричних мереж напругою 0,38—6—20 кВ 10
 6.1 Комплексна якісна оцінка технічного стану ПЛ напругою 6—20 кВ ... 10
 6.2 Комплексна якісна оцінка технічного стану ТП напругою 6—20/0,38 кВ ... 15
 6.3 Комплексна якісна оцінка технічного стану ПЛ напругою 0,38 кВ ... 21
7 Кількісна оцінка технічного стану об’єктів 24
Додаток А Перелік характерних дефектів елементів ПЛ напругою 6—20 кВ ... 28
Додаток Б Перелік характерних дефектів елементів ТП напругою 6—20/ 0,38 кВ, РП напругою 6—20 кВ 38
Додаток В Перелік характерних дефектів елементів ПЛ напругою 0,38 кВ ... 50
Додаток Г Порядок ведення листків огляду (перевірки) і журналів дефектів об’єктів ... 58
Додаток Д Бланки листків огляду (перевірки) і форми журналів дефектів об’єктів ... 61
Додаток Е Форма зведеного відомості показників технічного стану розподільних електричних мереж напругою 0,38—20 кВ за станом на 31.12. ______ р. 65
Додаток Ж Облік і аналіз відключень у розподільних електричних мережах напругою 6—20 кВ. 67
Додаток И Приклад визначення граничних значень коефіцієнта заміни Гз гр. ... 83
Додаток К Принципи ймовірнісного розрахунку періодичності та обсягів капітальних ремонтів ПЛ 5. 85
СОУ-Н МПЕ 40.1.20.576:2005

НОРМАТИВНИЙ ДОКУМЕНТ МІНПАЛИВЕНЕРГО УКРАЇНИ
НАСТАНОВА

МЕТОДИЧНІ ВКАЗІВКИ З ОБЛІКУ ТА АНАЛІЗУ
В ЕНЕРГОСИСТЕМАХ ТЕХНІЧНОГО СТАНУ
РОЗПОДІЛЬНИХ МЕРЕЖ НАПРУГОЮ 0,38—20 КВ
З ПОВІТРЯНИМИ ЛІНІЯМИ ЕЛЕКТРОПЕРЕДАЧІ

Чинний від 2005-04-04

1 Сфера застосування

1.1 Цей нормативний документ «Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі» (далі — НД) призначено для персоналу енергопостачальних компаній/підприємств, який здійснює експлуатацію розподільних електричних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі.

1.2 У цьому НД викладено основні положення і наведено рекомендації для визначення технічного стану розподільних електричних мереж (далі — об’єктів) напругою 0,38—20 кВ з повітряними лініями електропередачі.

Видання офіційне
2 Нормативні посилання

У цьому НД є посилання на такі нормативні документи:
ГКД 34.20.507—2003 Технічна експлуатація електричних станцій і мереж. Правила
ГКД 34.20.571—96 Металлические и железобетонные опоры воздушных линий электропередачи напряжением 35 кВ и выше. Методические указания по оценке технического состояния и перерасчету (Металеві та залізобетонні опори повітряних ліній електропередачі напругою 35 кВ та вище. Методичні вказівки з оцінки технічного стану і перерахунку)
ГКД 34.20.661—2003 Правила організації технічного обслуговування та ремонту обладнання, будівель і споруд електро-
станцій та мереж
ГКД 34.46.501—2003 Трансформатори силові. Типова інструкція з експлуатації
ГКД 34.51.573—96 Расчет показателей надежности возду- шных линий электропередачи на одностоенных железобе-
tonьных опорах при воздействии гололедно-ветровых нагрузок (Розрахунок показників надійності повітряних ліній електро-
передачі на одностоякових залізобетонних опорах під впли-
вом ожеледево-вітрових навантажень)
ГОСТ 13109—97 Електрична енергія. Совместимость технических средств электромагнитная. Нормы качества элек-
трической энергии в системах электроснабжения общего на-
значения (Електрична енергія. Сумісність технічних засобів електромагнітна. Норми якості електричної енергії в систе-
мах електропостачання загального призначення)
РГАСНТИ 44.31.31 Методические рекомендации по учету и анализу технического состояния электрических сетей на-
пряжением 0,38—20 кВ и воздушных линий электропередачи 35—110 кВ Минэнерго УССР. — Київ, 1990 г. (Методичні рекомендації з обліку та аналізу технічного стану електричних мереж напругою 0,38—20 кВ і повітряних ліній електро-
передачі 35—110 кВ Міненерго УРСР. — Київ, 1990 р.)
Методические указания по организации системы экс-
плуатационного обслуживания воздушных линий электропе-
редачі напряжением 0,4–20 кВ трансформаторних подстанцій напряжением 6–20/0,4 кВ и распределительных пунктов 6–20 кВ. — Київ, 1989 г. (Методичні вказівки з організації системи експлуатаційного обслуговування повітряних ліній електропередачі напругою 0,4–20 кВ, трансформаторних підстанцій напругою 6–20/0,4 кВ і розподільних пунктів 6–20 кВ. — Київ, 1989 р.)

ДСТУ 3429—96 Електрична частина електростанції та електричної мережі. Терміни та визначення

ДСТУ 3440—96 Системи енергетичні. Терміни та визначення Розслідування і облік технологічних порушень на об’єктах електроенергетики і в Об’єднаній енергетичній системі України, затверджено наказом Міненерго України від 29.01.1999 №30

З Терміни та визначення понять

Нижче подано терміни, вживі в цьому НД, та визначення позначених ними понять (ГКД 34.20.507, ДСТУ 3440).

Відмова — подія, яка полягає в переході об’єкта з одного рівня працездатності на інший, більш низький.

Відмова ПЛ або елементів ПЛ — подія, що полягає в переході ПЛ або її елементів з одного рівня працездатності на інший, більш низький.

Вибірковий контроль — огляд обмеженої групи об’єктів із загального обсягу однотипних з метою оцінки їх технічного стану.
Дефект елемента об’єкта (далі — дефект) — кожна окрема невідповідність елемента об’єкта вимогам, установленим нормативними документами, що не призведе до негайного автоматичного або змушеного відключення об’єкта.

Електрична мережа — сукупність підстанцій, розподільних пристроїв та ліній електропередачі, що їх з’єднують, предназначена для передавання і розподілу електричної енергії.

Електрична підстанція — електроустановка, предназначена для приймання, перетворення та розподілу електричної енергії, складена з трансформаторів чи інших перетворювачів електричної енергії, розподільних і керувальних установок і допоміжних пристроїв.

Енергопостачальна компанія/підприємство (компанія/ підприємство, що має ліцензію на передавання та постачання електроенергії) — учасник оптового ринку електричної енергії України, який купує електричну енергію на цьому ринку з метою передавання її по електричних мережах і продажу споживачам, що має ліцензію НКРЕ на право здійснення підприємницької діяльності з передавання електричної енергії місцевими (локальними) електромережами і здійснює свою діяльність на закріпленій території.

Кабельна лінія електропередачі — лінія електропередачі, складена з одного чи декількох кабелів, прокладених безпосередньо в землі, кабельних каналах, трубах, на кабельних конструкціях.

Капітальний ремонт — комплекс заходів і робіт, які виконуються з метою відновлення справного або працездатного стану об’єкта, включаючи їх посилення і заміну.

Лінія електропередачі — споруда, що складається з проводів або кабелів, ізоляційних елементів, утримних конструкцій та інших допоміжних пристроїв і предназначена для передавання електричної енергії між двома пунктами енергосистеми з можливим проміжним відбором.

Натурний огляд — огляд і вимір об’єктів у натурних умовах із застосуванням у необхідних випадках спеціальних методів з метою виявлення в об’єктах відхилень, дефектів і пошкоджень.
Непрацездатний стан, непрацездатність — стан об'єкта, при якому він повністю не здатний виконувати потрібні функції.

Неремонтпридатний стан об'єкта — непрацездатний стан об'єкта, при якому відновлення експлуатаційних характеристик або технічно неможливо, або економічно недоцільно.

Несправний стан об'єкта, несправність — стан об'єкта, при якому він не відповідає одній або більше вимогам чинної нормативно-технічної та (або) конструкторської (проектної) документації.

Оцінка технічного стану об'єктів — визначення значень показників технічних параметрів об'єктів з виявленим місць, типів, кількості дефектів і пошкоджень і причин їх появи, що впливають на здатність об'єкта виконувати свої функції в забезпеченні технологічного процесу.

Повітряна лінія електропередачі — лінія електропередачі, проводи якої підтримують над землею за допомогою опор та ізоляторів.

Пошкодження ПЛ, елементів ПЛ — порушення справного стану ПЛ, елементів ПЛ у процесі експлуатації при збереженні працездатного стану.

Працездатний стан, працездатність — стан об'єкта, при якому він здатний виконувати всі або частину потрібних функцій у повному або частковому обсязі.

Ремонтпридатність — властивість об'єкта, яка полягає в пристосованості до підтримання та відновлення працездатного стану шляхом технічного обслуговування та (або) ремонту.

Ремонтпридатний стан конструкції — непрацездатний стан конструкції, при якому відновлення експлуатаційних характеристик технічно можливе та економічно доцільне.

Розподільна електрична мережа — електрична мережа, що забезпечує розподіл електричної енергії між пунктами споживання.

Справний стан об'єкта, справність — стан об'єкта, при якому він цілком відповідає всім вимогам чинної нормативно-технічної та (або) конструкторської (проектної) документації.
Технічний стан об’єкта — сукупність властивостей, що характеризують у визначений момент часу відповідність об’єкта вимогам норм і умовам забезпечення технологічного процесу.

4 Позначки та скорочення

У цьому НД використовуються такі скорочення:
АПВ — автоматичне повторне включення;
БСК — батарея статичних конденсаторів;
ДЕМ — дільниця електричних мереж (РЕМ);
ДП — диспетчерський пункт;
ЕМ — електричні мережі (філія передавальної енерго-компанії);
З/Б — залізобетон;
ЗТП — закрита трансформаторна підстанція;
КЗ — коротке замикання;
КЛ — кабельна лінія;
КР — капітальний ремонт;
КТП — комплектна трансформаторна підстанція;
ЛЕП — лінія електропередачі;
МРН — місцеве регулювання напруги;
НКРЕ — Національна комісія регулювання електроенергетики;
ОДГ — оперативна диспетчерська група;
ОДС — оперативна диспетчерська служба;
ОПН — обмежувач перенапруги;
ПАВВО — пристрій автоматичного включення вуличного освітлення;
ПЗ — програмне забезпечення;
ПК — персональний комп’ютер;
ПЛ — повітряна лінія;
ПС — підстанція;
РЕМ — район електричних мереж;
РП — розподільчий пункт;
РПВ — ручне повторне включення;
РТ — розподільний трансформатор;
РП — розподільний пристрій;
СК — синхронні компенсатори;
СМЗ — служба матеріального забезпечення;
СУП — самоутримний провід;
ТН — трансформатори напруги;
ТО — технічне обслуговування;
ТП — трансформаторна підстанція;
ТС — трансформатори струму;
ЦЖ — центр живлення;
ЩТП — щоглова трансформаторна підстанція.

5 Загальні положення

5.1 Загальна частина

Технічний стан об’єкта може бути визначено за сукупністю наявних дефектів його елементів, зареєстрованих у процесі технічного обслуговування — оглядів, перевірок, іспитів і вимірів тощо (ГКД 34.20.661).

Дефекти повинні усуватися в процесі технічного обслуговування або ремонту (ГКД 34.20.571, ГКД 34.46.501). Перелік характерних дефектів наведено в додатках А—В. Дефекти, що створюють загрозу безпеці населення або обслуговуючого персоналу (у додатках А—В вони позначені «зірочкою»), повинні усуватися негайно.

На підставі цього НД рекомендується складати відповідні інструкції та документи підприємств, які враховують умови експлуатації та застосування конкретних конструкцій та уставкування.

5.2 Облік і оцінка технічного стану об’єктів

Реєстрація дефектів виконується в листку огляду (перевірки), що заповнюються під час:
- періодичних оглядів об’єктів електромонтерами або спеціалістами;
- верхових оглядів об’єктів;
- позачергових оглядів після стихійних явищ або після успішного ручного повторного включення об’єктів;
- перевірки ступеня загнивання дерев’яних елементів опор;
- перевірки стану залізобетонних опор та залізобетонних елементів дерев’яних опор;
- перевірки опору заземлення;
- перевірки опору петлі «фаза — нуль»;
- перевірки перерізів проводів ПЛ, їх габаритів до поверхні землі або до об’єктів, які вони перетинають.

Дані листків огляду (перевірки) заносяться до журналу дефектів.

Порядок ведення листків огляду (перевірки) і журналів дефектів наведено в додатку Г, а їх бланки, що рекомендаються, і форми — у додатку Д.

Ведення журналів дефектів покладається на фахівців енергопостачальної компанії/організації.

Керівники і спеціалісти енергопостачальної компанії/організації повинні систематично контролювати дотримання встановленої періодичності обходів і перевірок об’єктів, які провадяться згідно із затвердженим графіком їх проведення, а також правильність заповнення листка огляду (перевірки) і журналу дефектів і виконання прийнятих рішень щодо усунення дефектів.

Перевірка проведення обходів повинна здійснюватися відповідно до вимог ГКД 34.20.507, даного НД і на підставі річного плану-графіка технічного обслуговування, кожній виконавчій позиції якого повинен відповідати заповнений листок огляду (перевірки).

Правильність заповнення журналу дефектів визначається на підставі перегляду заповнених листків огляду (перевірки) і перевірки вжитих заходів щодо усунення дефектів (ГОСТ 13109, ГКД 34.51.573) із заходами, зазначеними в додатках А—В. Особливу увагу необхідно звертати на реєстрацію і своєчасне усунення дефектів, позначених «зірочкою».

Використовуються два види оцінки технічного стану об’єктів — комплексна якісна і кількісна (ПГАСНТИ 44.31.31).
Приклад комплексної якісної оцінки технічного стану наведено в розділі 6, а кількісної — у розділі 7.

Комплексна якісна оцінка ("Методичні вказівки по організації системи експлуатаційного обслуговування воздушних ліній електропередачі напругою 0,4—20 кВ трансформаторних подстанцій напругою 6—20/0,4 кВ і розподільних пунктів 6—20 кВ") використовується для порівняння технічного стану електричних мереж і їхніх елементів у галузі, енергопостачальних організацій, для визначення обсягів фінансування робіт з поліпшення технічного стану об’єктів, для складання річних планів ремонту і реконструкції, у тому числі за умов обмеженості фінансових, матеріальних і трудових ресурсів та відсутності достовірної інформації про технічний стан об’єктів (додатки Е, Ж).

Кількісна оцінка використовується як загальна характеристика рівня технічного стану різних і різноманітних об’єктів енергокомпаній для визначення видів, обсягів та термінів виконання робіт з приведення технічного стану об’єктів до вимог чинних нормативно-правових актів (додатки І, К).

5.3 Порядок обліку якісної оцінки об’єктів

Інформація про технічний стан об’єктів на 31 грудня звітного року надається енергопостачальною компанією/організацією до Мінпаливenergy за формою, наведеною у додатку Е, не пізніше 1 лютого року, наступного за звітним з урахуванням аналізу відключень, проведенного згідно з додатком Ж.

На підставі отриманої інформації здійснюється комплексна якісна оцінка технічного стану електричних мереж у цілому по галузі і по енергопостачальній компанії/організації, а також визначається потреба в матеріальних ресурсах на ремонтно-експлуатаційні заходи.
6 Комплексна якісна оцінка технічного стану об’єктів електричних мереж напругою 0,38—6—20 кВ

6.1 Комплексна якісна оцінка технічного стану ПЛ напругою 6—20 кВ

На даний час вибір заходів щодо обслуговування електричних мереж здійснюється на основі якісної оцінки технічного стану об’єктів (ДСТУ 3429, «Правила устроюства электроустановок, «Методические указания по обеспечению при проектировании нормативных уровней надежности электрооснащения сельскохозяйственных потребителей»). Для визначення технічного стану об’єкта використовуються такі якісні критерії:
- добрый технічний стан;
- підлягає капітальному ремонту;
- підлягає реконструкції;
- підлягає повній заміні.

У даний час основними ознаками при виборі показника оцінки технічного стану об’єкта є такі критерії експлуатацій них робіт, проведених на об’єкті:
- у добруму технічному стані знаходяться об’єкти, в яких дефекти не виявлені або виявлениі дефекти усуваються виконанням робіт, що відносяться до номенклатури технічного обслуговування;
- об’єкт підлягає капітальному ремонту (знаходиться в задовільному стані), якщо обсяг робіт з усунення виявлених дефектів відноситься до номенклатури капітального ремонту і спрямований на збереження (відновлення) колишніх техніко-економічних характеристик об’єкта в межах засобів амортизаційних відрахувань на капітальний ремонт;
- об’єкт підлягає реконструкції (знаходиться в незадовільному стані) при:
 a) перевищенні обсягів робіт з усунення виявлених дефектів номенклатури обсягів робіт капітального ремонту, визначеном згідно з «Методическим указаниями по организации системы эксплуатационного обслуживания воздушных
линий електропередачі напружением 0,4—20 кВ трансформаторних підстанцій напружением 6—20/0,4 кВ і розподільних пунктів 6—20 кВ", що провадяться за рахунок амортизаційних відрахувань на капітальний ремонт;

б) необхідності істотного поліпшення основних техніко-економічних характеристик об’єкта при проведенні різних типів робіт;

- об’єкт підлягає повній заміні (знаходиться в непридатному стані), якщо подальша його експлуатація технічно або економічно неможлива (недоцільна), оскільки необхідна заміна основного устаткування, стан якого не відповідає вимогам нормативно-технічної документації, або ж необхідна заміна непридатної до експлуатації будівельної частини.

До реконструкції ліній електропередачі відносяться такі роботи, як підвищення їх пропускної здатності за рахунок збільшення перерізу проводів, підвищення другого кола або переходу на більш високий клас напруги, підвищення її механічної міцності (за рахунок установлення додаткових опор задля зменшення довжини прольотів тощо), а також оснащення лінії пристроями автоматики, телемеханіки і дистанційних визначень до місць пошкодження.

До реконструкції ТП відносяться роботи з модернізації або заміни основного устаткування на устаткування більшої потужності або більш високої номінальної напруги, зміни електричної схеми підстанції, її розширення, а також роботи з оснащення підстанції пристроями автоматики і телемеханіки.

Комплексна якісна оцінка технічного стану ПЛ напругою 6—20 кВ визначається з урахуванням технічного стану таких основних елементів ПЛ напругою 6—20 кВ: опор, ізоляторів і проводів.

Технічний стан опор однієї ПЛ напругою 6—20 кВ уста новлюється на підставі коефіцієнта дефектності опор КДО даної ПЛ:

$$K_{ДО} = \frac{0,87 \cdot ОДД + ОДЗ}{0,87 \cdot ОУД + ОУЗ} \cdot 100;$$ \hspace{1cm} (6.1)
де 0,87 — коефіцієнт приведення обсягу енергородеревини до обсягу залізобетону;

ОДД — обсяг дефектної енергородеревини опор даної ПЛ, що знаходиться в експлуатації за станом на 31 грудня звітного року, м³;

ОДЗ — обсяг дефектного З/Б опор даної ПЛ, що знаходиться в експлуатації за станом на 31 грудня звітного року, м³;

ОУД — обсяг установленої енергородеревини опор даної ПЛ, що знаходиться в експлуатації за станом на 31 грудня звітного року, м³;

ОУЗ — обсяг установленого З/Б опор даної ПЛ, що знаходиться в експлуатації за станом на 31 грудня звітного року, м³.

Обсяги дефектної енергородеревини і дефектного З/Б опор ПЛ напругою 6—20 кВ визначаються виходячи з кількості дефектних елементів, зареєстрованих на даній ПЛ напругою 6—20 кВ за станом на 31 грудня звітного року:

\[
O_{ДД} = \sum_{i}^{l} n_{Di}^{D} V_{Di}; \quad O_{ДЗ} = \sum_{j}^{m} n_{3j}^{D} V_{3j}; \quad (6.2)
\]

де \(n_{Di}^{D}, n_{3j}^{D} \) — відповідно кількість дефектних дерев’яних (\(i \)) і залізобетонних елементів опор ПЛ напругою 6—20 кВ, зареєстрованих на даній ПЛ за станом на 31 грудня звітного року, шт. Перелік дефектів елементів опор ПЛ напругою 6—20 кВ, за наявності яких відповідний елемент вважається дефектним і підлягає заміні, наведено в додатку A;

\(l \) і \(m \) — кількість дерев’яних (\(i \)) і залізобетонних (\(j \)) елементів у опорах ПЛ напругою 6—20 кВ відповідно;

\(V_{Di}, V_{3j} \) — розрахунковий обсяг одного елемента опор напругою ПЛ 6—20 кВ, м³.

Обсяги встановленої енергородеревини і встановленого З/Б опор напругою ПЛ 6—20 кВ визначаються на підставі кількості встановлених елементів на даній ПЛ за станом на 31 грудня звітного року:

\[
O_{УД} = \sum_{i}^{l} n_{Di}^{Y} V_{Di}; \quad O_{УЗ} = \sum_{j}^{m} n_{3j}^{Y} V_{3j}, \quad (6.3)
\]
де \(n_{Di}^\gamma, n_{Dj}^\gamma \) — відповідно кількість установлених дерев'яних \((i)\) і залізобетонних \((j)\) елементів опор ПЛ напругою 6—20 кВ на даній ПЛ за станом на 31 грудня звітного року, шт.

Технічний стан ізоляторів однієї ПЛ напругою 6—20 кВ установлюється на підставі коефіцієнта дефектності ізоляторів (КДІ) даної ПЛ:

\[
K_{D1} = \frac{n_i^D}{n_i^\gamma} \cdot 100, \quad (6.4)
\]

де \(n_i^D \) — кількість дефектних ізоляторів ПЛ напругою 6—20 кВ, зареєстрованих на даній ПЛ за станом на 31 грудня звітного року, шт. Перелік дефектів ізоляторів, за наявності яких ізолятор вважається дефектним, наведено в додатку А;

\(n_i^\gamma \) — кількість установлених ізоляторів ПЛ напругою 6—20 кВ, що знаходяться в експлуатації на даній ПЛ за станом на 31 грудня звітного року, шт.

Технічний стан проводів однієї ПЛ напругою 6—20 кВ встановлюється на підставі коефіцієнта дефектності проводів КДП даної ПЛ:

\[
K_{DP} = \frac{L_i^D}{L_i^\gamma} \cdot 100, \quad (6.5)
\]

де \(L_i^D \) — довжина дефектних проводів ПЛ напругою 6—20 кВ, зареєстрованих на даній ПЛ за станом на 31 грудня звітного року, км. Перелік дефектів проводів, за наявності яких провід у даному проміжному прольоті ПЛ напругою 6—20 кВ вважається дефективним, наведено в додатку А;

\(L_i^\gamma \) — довжина встановлених проводів ПЛ напругою 6—20 кВ, що знаходяться в експлуатації на даній ПЛ за станом на 31 грудня звітного року, км.

Комплексна якісна оцінка технічного стану однієї ПЛ напругою 6—20 кВ установлюється на підставі коефіцієнта дефектності КДВ даної ПЛ:
\[K_{ДВ} = 0,48 \cdot K_{ДО} + 0,07 \cdot K_{ДI} + 0,45 \cdot K_{ДП}, \]

де 0,48; 0,07; 0,45 — вагові коефіцієнти, що відбувають відповідно вплив технічного стану опор, ізоляторів і проводів на вартість ремонтних робіт із заміни всіх дефектних елементів ПЛ напругою 6—20 кВ справними елементами.

На підставі значення коефіцієнта дефектності даної ПЛ визначається комплексна якісна оцінка її технічного стану згідно з даними таблиці 6.1.

Таблиця 6.1

<table>
<thead>
<tr>
<th>Значення коефіцієнта дефектності КДВ, %</th>
<th>Комплексна якісна оцінка технічного стану ПЛ 6—20 кВ і її індекс</th>
<th>Ваговий коефіцієнт оцінки</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Добрий</td>
<td>TO 1 0</td>
</tr>
<tr>
<td>Менше 25</td>
<td>Задовільний</td>
<td>КР 2 0,1</td>
</tr>
<tr>
<td>Від 25 до 50</td>
<td>Незадовільний</td>
<td>Реконструкція 3 0,3</td>
</tr>
<tr>
<td>50 і вище</td>
<td>Непридатний</td>
<td>Заміна 4 0,6</td>
</tr>
</tbody>
</table>

Комплексна якісна оцінка технічного стану сукупності ПЛ напругою 6—20 кВ установлюється на підставі комплексних якісних оцінок кожного з вхідних у дану сукупність ПЛ:

\[K_{ДСВ} = \frac{0 \cdot L_1 + 0,1 \cdot L_2 + 0,3 \cdot L_3 + 0,6 \cdot L_4}{L_1 + L_2 + L_3 + L_4} \cdot 100, \]

де \(L_1 + L_2 + L_3 + L_4 \) — сумарна довжина ПЛ напругою 6—20 кВ, що знаходяться відповідно в добруму, задовільному, незадовільному і непридатному технічному стані, км;

0; 0,1; 0,3; 0,6 — вагові коефіцієнти комплексної оцінки технічного стану ПЛ напругою 6—20 кВ.

Приклад 1. Визначити за (6.6) комплексну якісну оцінку технічного стану однієї ПЛ—10 кВ, у якої

\[K_{ДО} = 14,6; \quad K_{ДI} = 48,6; \quad K_{ДП} = 1,1; \]

\[K_{ДВ} = 0,48 \cdot 14,6 + 0,07 \cdot 48,6 + 0,45 \cdot 1,1 = 10,9. \]
Висновок. Дана ПЛ—10кВ знаходиться в задовільному стані, тому що її КДСВ менше 25.

Приклад 2. Порівняти по (6.7) технічний стан ПЛ напругою 10 кВ двох РЕМ за даними, наведеними в таблиці 6.2.

<table>
<thead>
<tr>
<th>Найменування РЕМ</th>
<th>Довжина ПЛ 10 кВ, км, що знаходяться в технічному стані</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>доброму</td>
<td>задовільному</td>
</tr>
<tr>
<td>Білозерський</td>
<td>28</td>
<td>208</td>
</tr>
<tr>
<td>Іванівський</td>
<td>46</td>
<td>319</td>
</tr>
</tbody>
</table>

\[
\text{КДСВ}_{\text{Білозерський РЕМ}} = \frac{0.29 + 0.1 \cdot 198 + 0.3 \cdot 123 + 0.6 \cdot 90}{29 + 198 + 123 + 90} \cdot 100 = 25.16;
\]

\[
\text{КДСВ}_{\text{Іванівський РЕМ}} = \frac{0.45 + 0.1 \cdot 321 + 0.3 \cdot 151 + 0.6 \cdot 23}{45 + 321 + 151 + 23} \cdot 100 = 16.97.
\]

Висновки.
1. Повітряні лінії напругою 10 кВ у Білозерському РЕМ знаходяться в незадовільному стані, тому що КДСВ_{Білозерський РЕМ} перевищує 25. Повітряні лінії напругою 10 кВ у Іванівському РЕМ знаходяться в задовільному стані, тому що КДСВ_{Іванівський РЕМ} менше 25.
2. Технічний стан ПЛ напругою 10 кВ у Іванівському РЕМ кращий, ніж у Білозерському РЕМ.

6.2 Комплексна якісна оцінка технічного стану ТП напругою 6—20/0,38 кВ

Комплексна якісна оцінка технічного стану ТП напругою 6—20/0,38 кВ різних типів визначається з урахуванням технічного стану таких елементів:
a) для щоголових трансформаторних підстанцій (ЩТП):
- будівельна частина;
- корпус РУ 0,38 кВ;
- силові трансформатори;
- комутаційні апарати 6–20 кВ;
- апарати захисту від перенапруги 6–20 кВ;
- ізоляція збірних шин 6–20 кВ;
- комутаційні апарати 0,38 кВ;
- ізоляція збірних шин 0,38 кВ;
- ізоляція проводів низьковольтної комутації.
для комплексних трансформаторних підстанцій (КТП):
- будівельна частина;
- корпуси РУ 6–20 і 0,38 кВ;
- силові трансформатори;
- комутаційні апарати 6–20 кВ;
- апарати захисту від перенапруги 6–20 кВ;
- ізоляція збірних шин 6–20 кВ;
- комутаційні апарати 0,38 кВ;
- апарати захисту від перенапруги 0,38 кВ;
- ізоляція збірних шин 0,38 кВ;
- ізоляція проводів низьковольтної комутації;
б) для закритих трансформаторних підстанцій (ЗТП):
- будівельна частина;
- корпуси РУ 6–20 і 0,38 кВ;
- силові трансформатори;
- комутаційні апарати 6–20 кВ;
- апарати захисту від перенапруги 6–20 кВ;
- ізоляція збірних шин 6–20 кВ;
- комутаційні апарати 0,38 кВ;
- апарати захисту від перенапруги 0,38 кВ;
- ізоляція збірних шин 0,38 кВ;
- ізоляція проводів низьковольтної комутації;
Технічний стан будівельної частини ЦТП, змонтованої на опорах, і КТП, що встановлюються на вертикальних і горизонтальних стійках, визначається на підставі КДО за формулами (5.1)—(5.3). Дефекти елементів опор будівельної частини ЦТП і КТП, при наявності яких відповідний елемент підлягає заміні, відзначені «зірочкою» в додатку Б. Розрахунковий обсяг елемента будівельної частини ЦТП і КТП варто приймати відповідно до додатка Е з урахуванням його розміру.
Основні елементи будівельної частини ЗТП вважаються дефектними і такими, що підлягають заміні, при наявності дефектів, відзначених «зірочкою» у додатку Б. При наявності хоча б одного з таких дефектів ЗТП коефіцієнт дефектності будівельної частини КДЧ ЗТП приймається рівним 100, при відсутності — рівним 0.

Корпуси РП-10 кВ ЩТП, корпуси РП 6—20 кВ і РП 0,38 кВ КТП і ЗТП підлягають заміні при наявності в них дефектів з кодами C42, C43 і C52 згідно з додатком Б. Відповідно при наявності хоча б одного такого дефекту коефіцієнт дефектності корпуса (КДК) ЩТП, КТП і ЗТП приймається рівним 100, а за відсутності — рівним 0.

Силовий трансформатор 6—20/0,38 кВ ЩТП, КТП і ЗТП вважається дефектним і підлягає заміні при наявності в ньому хоча б одного з дефектів з кодами Я11, Я12, Я15 або Я18 згідно з додатком Б. Відповідно при наявності хоча б одного такого дефекту коефіцієнт дефектності силового трансформатора (КДТ) приймається рівним 100, а при відсутності — рівним 0.

Комутаційний апарат 6—20 кВ ЩТП, КТП і ЗТП вважається дефектним і підлягає заміні при наявності в ньому хоча б одного дефektu з кодами B62, B63, B71, B73, B75, B81, B91—B93, B94, B95—B98 згідно з додатком Б. Відповідно при наявності хоча б одного з цих дефектів коефіцієнт дефектності комутаційного апарату (КДКА) приймається рівним 100, а при відсутності — рівним 0.

Апарат захисту від перенапруг ПР 6—20 кВ ЩТП, КТП і ЗТП вважається дефектним і підлягає заміні при наявності в ньому хоча б одного дефекту з кодами B62, B63, B71, B73, B75, B81, B91—B93, B94, B95—B98 згідно з додатком Б. Відповідно при наявності хоча б одного з цих дефектів коефіцієнт дефектності комутаційного апарату (КДЗА) приймається рівним 100, а при відсутності — рівним 0.

Ізолятори шин і приєднань РП 6—20 кВ ЩТП, КТП і ЗТП вважаються дефектними і підлягають заміні при наявності в них хоча б одного з дефектів з кодами В31, В33, В41, В43, В51, В53 згідно з додатком Б. Відповідно при наявності
цього дефекту коефіцієнт дефектності КДІНН приймається рівним 100, а при відсутності — рівним 0.

Для встановлення комплексної якісної оцінки технічного стану ТП напругою 6—20/0,38 кВ обчислюється коефіцієнт дефектності конкретної ТП за формулами:

для ЩТП:

\[
\begin{align*}
\text{КД}_{ЩТП} &= 0,24 \text{КДО} + 0,11 \text{КДК} + 0,25 \text{КДТ} + \\
&+ 0,08 \text{КДКА}_{\text{ВН}} + 0,08 \text{КДЗА}_{\text{ВН}} + 0,08 \text{КДІ}_{\text{ВН}} + \\
&+ 0,08 \text{КДКА}_{\text{НН}} + 0,08 \text{КДЗА}_{\text{НН}} + 0,04 \text{КДІ}_{\text{НН}}; \\
\end{align*}
\]

(6.8)

для однотрансформаторних КТП тупикового типу:

\[
\begin{align*}
\text{КД}_{\text{КТП1}} &= 0,1 \text{КДО} + 0,2 \text{КДК} + 0,25 \text{КДТ} + 0,1 \text{КДКА}_{\text{ВН}} + \\
&+ 0,09 \text{КДЗА}_{\text{ВН}} + 0,09 \text{КДІ}_{\text{ВН}} + 0,09 \text{КДКА}_{\text{НН}} + \\
&+ 0,05 \text{КДЗА}_{\text{НН}} + 0,05 \text{КДІ}_{\text{НН}}; \\
\end{align*}
\]

(6.9)

для однотрансформаторних КТП проходного типу:

\[
\begin{align*}
\text{КД}_{\text{КТП1н}} &= 0,09 \text{КДО} + 0,18 \text{КДК} + 0,22 \text{КДТ} + \\
&+ 0,18 \text{КДКА}_{\text{ВН}} + 0,08 \text{КДЗА}_{\text{ВН}} + 0,08 \text{КДІ}_{\text{ВН}} + \\
&+ 0,08 \text{КДКА}_{\text{НН}} + 0,04 \text{КДЗА}_{\text{НН}} + 0,05 \text{КДІ}_{\text{НН}}; \\
\end{align*}
\]

(6.9а)

для двотрансформаторних КТП:

\[
\begin{align*}
\text{КД}_{\text{КТП2п}} &= 0,04 (\text{КДО} + \text{КДО}_2) + 0,09 (\text{КДК} + \text{КДК}_2) + \\
&+ 0,11 (\text{КДТ} + \text{КДТ}_2) + 0,09 (\text{КДКА}_{\text{ВН}} + \text{КДКА}_{\text{ВН}_2}) + \\
&+ 0,04 (\text{КДЗА}_{\text{ВН}_1} + \text{КДЗА}_{\text{ВН}_2}) + 0,04 (\text{КДІ}_{\text{ВН}_1} + \text{КДІ}_{\text{ВН}_2}) + \\
&+ 0,04 (\text{КДКА}_{\text{НН}_1} + \text{КДКА}_{\text{НН}_2}) + 0,02 (\text{КДЗА}_{\text{НН}_1} + \\
&+ \text{КДЗА}_{\text{НН}_2}) + 0,03 (\text{КДІ}_{\text{НН}_1} + \text{КДІ}_{\text{НН}_2}); \\
\end{align*}
\]

(6.9б)

для однотрансформаторних ЗТП:

\[
\begin{align*}
\text{КДЗ}_{\text{ТП1}} &= 0,2 \text{КДУ} + 0,14 \text{КДК} + 0,2 \text{КДТ} + 0,1 \text{КДКА}_{\text{ВН}} + \\
&+ 0,09 \text{КДЗА}_{\text{ВН}} + 0,09 \text{КДІ}_{\text{ВН}} + 0,09 \text{КДКА}_{\text{НН}} + \\
&+ 0,04 \text{КДЗА}_{\text{НН}} + 0,05 \text{КДІ}_{\text{НН}}; \\
\end{align*}
\]

(6.9в)

для двотрансформаторних ЗТП:

\[
\begin{align*}
\text{КДЗ}_{\text{ТП2п}} &= 0,2 \text{КДУ} + 0,07 (\text{КДК}_1 + \text{КДК}_2) + 0,1 (\text{КДТ} + \\
&+ \text{КДТ}_2) + 0,05 (\text{КДКА}_{\text{ВН}_1} + \text{КДКА}_{\text{ВН}_2}) + 0,05 (\text{КДЗА}_{\text{ВН}_1} + \\
&+ \text{КДЗА}_{\text{ВН}_2}) + 0,04 (\text{КДІ}_{\text{ВН}_1} + \text{КДІ}_{\text{ВН}_2}) + 0,05 (\text{КДКА}_{\text{НН}_1} + \\
&+ \text{КДКА}_{\text{НН}_2}) + 0,02 (\text{КДЗА}_{\text{НН}_1} + \text{КДЗА}_{\text{НН}_2}) + 0,02 (\text{КДІ}_{\text{НН}_1} + \\
&+ \text{КДІ}_{\text{НН}_2}); \\
\end{align*}
\]

(6.9г)
де числа, на які збільшуються коефіцієнти дефектності (KДО, KДТ тощо) є ваговими коефіцієнтами, що відбивають вплив технічного стану елементів ТП 6—20/0,38 кВ на вартість ремонтних робіт із заміни всіх дефектних елементів справними аналогічними елементами.

За обчисленим значенням коефіцієнта дефектності конкретної ТП напругою 6—20/0,38 кВ установлюється комплексна якісна оцінка її технічного стану згідно з даними таблиці 6.3:

<table>
<thead>
<tr>
<th>Значення коефіцієнта дефектності (КДщт), %</th>
<th>Комплексна якісна оцінка технічного стану ТП 6 — 20 кВ/0,38 кВ та її індекс</th>
<th>Ваговий коефіцієнт оцінки</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Добрий</td>
<td>ТО</td>
</tr>
<tr>
<td>Менше 25</td>
<td>Задовільний</td>
<td>Р</td>
</tr>
<tr>
<td>Від 25 до 50</td>
<td>Незадовільний</td>
<td>Реконструкція</td>
</tr>
<tr>
<td>50 і вище</td>
<td>Непридатний</td>
<td>Заміна</td>
</tr>
</tbody>
</table>

Для встановлення комплексної якісної оцінки технічного стану довільної сукупності ТП напругою 6—20/0,38 кВ обчисляється коефіцієнт цієї сукупності ТП (KДст) за формулою:

$$KД_{ст} = \frac{0 \cdot N_1 + 0,1 \cdot N_2 + 0,3 \cdot N_3 + 0,6 \cdot N_4}{N_1 + N_2 + N_3 + N_4} \cdot 100,$$

де $N_1 + N_2 + N_3 + N_4$ — кількість ТП напругою 6—20/0,38 кВ, що знаходяться на момент оцінки відповідно в добруму, задовільному, незадовільному або непридатному технічному стані, шт;

0, 0,1, 0,3, 0,6 — значення вагових коефіцієнтів, установлених для градацій комплексної якісної оцінки технічного стану ТП напругою 6—20/0,38 кВ: добрий, задовільний, незадовільний, непридатний відповідно.

За обчисленим значенням коефіцієнта дефектності сукупності ТП напругою 6—20/0,38 кВ установлюється комплексна якісна оцінка її технічного стану.
Приклад 1. Установити комплексну якісну оцінку технічного стану однієї двотрансформаторної КТП напругою 10/0,38 кВ, що має елементи зі значеннями коефіцієнтів дефектності, відмінними від 0.

\[\begin{align*}
КДО_1 &= 29,31; \quad КДК_2 = 100; \quad КДА_1 = 100; \\
КДЭA_{ВН1} &= 100; \\nКДI_{НН2} &= 100.
\end{align*} \]

Обчислюється за (6.9б) коефіцієнт дефектності цієї ТП:

\[КД_{КТП2н} = 0,04 \cdot 30,45 + 0,09 \cdot 100 + 0,11 \cdot 100 + \\
+ 0,04 \cdot 100 + 0,03 \cdot 100 = 28,17. \]

Висновок. Дана КТП 10/0,38 кВ знаходиться в незадовільному стані, тому що \(25 < КД_{КТП2н} < 50 \).

Приклад 2. Порівняти технічний стан ТП 10/0,38 кВ двох населених пунктів, що мають значення індивідуальних комплексних якісних оцінок технічного стану, зазначені в табліці 6.4.

Таблиця 6.4

<table>
<thead>
<tr>
<th>Найменування населеного пункту</th>
<th>Кількість ТП 10/0,38 кВ, шт., що знаходяться в технічному стані</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>добруму</td>
</tr>
<tr>
<td>с.Червоне</td>
<td>1</td>
</tr>
<tr>
<td>с.Часів Яр</td>
<td>0</td>
</tr>
</tbody>
</table>

Обчислюються за (6.10) коефіцієнти дефектності суккупності ТП напругою 10/0,38 кВ у відповідному населеному пункті:

1. с.Червоне: \[КД_{ст1} = \frac{0 \cdot 1 + 0.1 \cdot 1 + 0.3 \cdot 0 + 0.6 \cdot 1}{1 + 1 + 0 + 1} \cdot 100 = 23,33; \]

2. с.Часів Яр: \[КД_{ст2} = \frac{0 \cdot 0 + 0.1 \cdot 3 + 0.3 \cdot 0 + 0.6 \cdot 1}{0 + 3 + 0 + 1} \cdot 100 = 22,5. \]

Висновки.

1. Трансформаторні підстанції напругою 10/0,38 кВ у селах Червоне і Часів Яр знаходяться в задовільному стані, тому що \(КД_{ст1} \) і \(КД_{ст2} \) менші 25.
2. Технічний стан ТП напругою 10/0,38 кВ у с.Часів Яр вищий, ніж у с.Червоне, тому що \(K_{Д_{ст1}} \) менше \(K_{Д_{ст2}} \).

6.3 Комплексна якісна оцінка технічного стану ПЛ напругою 0,38 кВ

Комплексна якісна оцінка технічного стану ПЛ напругою 0,38 кВ визначається з урахуванням технічного стану таких елементів ПЛ, опор, ізоляторів, проводів і відгалужень від даної ПЛ.

Технічний стан опор однієї ПЛ напругою 0,38 кВ уста новлюється на підставі КДО за формулами (5.1—5.3). Перелік дефектів елементів опор ПЛ напругою 0,38 кВ, при наявності яких відповідний елемент підлягає заміні, наведено в додатку В. Розрахунковий обсяг елемента опор ПЛ напругою 0,38 кВ рекомендується приймати згідно з додатком Е.

Технічний стан ізоляторів ПЛ напругою 0,38 кВ визначається за формулою (6.4). Розрахунковий обсяг елементів ізоляції ПЛ напругою 0,38 кВ рекомендується приймати згідно з додатком Е.

Технічний стан проводів однієї ПЛ напругою 0,38 кВ уста новлюється на підставі коефіцієнта дефектності проводів (КДП) даної ПЛ:

\[
K_{ДП} = \frac{L^d}{L^y} \cdot 100; \tag{6.11}
\]

де \(L^d \) — довжина дефектних проводів ПЛ напругою 0,38 кВ, зареєстрованих на даній ПЛ за станом на 31 грудня звітного року, км. Перелік дефектів проводів, при наявності яких провід у даному проміжному прольоті ПЛ вважається дефективним, наведено в додатку В;

\(L^y \) — довжина встановленних проводів ПЛ напругою 0,38 кВ, що знаходяться в експлуатації на даній ПЛ за станом на 31 грудня звітного року, км.

Технічний стан відгалужень від ПЛ напругою 0,38 кВ до вводів в будинки встановлюється на підставі коефіцієнта дефектності відгалужень (КДЗ) даної ПЛ:
де \(n_{\text{aide}} \) — кількість дефектних відгалужень від ПЛ напругою 0,38 кВ, зареєстрованих на даній ПЛ за станом на 31 грудня звітного року, шт. Перелік дефектів відгалужень, при наявності яких відгалуження вважається дефектним і підлягає заміні, наведено в додатку В (П61,П62);

\(n_{\text{aide}}^{\text{y}} \) — кількість установлених відгалужень від ПЛ напругою 0,38 кВ, що знаходяться в експлуатації на даній ПЛ за станом на 31 грудня звітного року, шт.

Комплексна якісна оцінка технічного стану однієї ПЛ напругою 0,38 кВ встановлюється на підставі коефіцієнта дефектності (КДН) даної ПЛ 0,38 кВ:

\[
\text{КДН} = 0,63 \times \text{КДО} + 0,23 \times \text{КДП} + 0,14 \times \text{КДЗ},
\]

де 0,63; 0,23; 0,14 — вагові коефіцієнти, що відбивають відповідно вплив технічного стану опор, проводів і відгалужень від ПЛ напругою 0,38 кВ на вартість ремонтних робіт із заміни всіх дефектних елементів ПЛ справними аналогічними елементами.

На підставі значення коефіцієнта дефектності даної ПЛ напругою 0,38 кВ устанавливається комплексна якісна оцінка її технічного стану згідно з даними таблиці 6.5:

<table>
<thead>
<tr>
<th>Значення коефіцієнта дефектності (КДН), %</th>
<th>Комплексна якісна оцінка технічного стану ПЛ напругою 0,38 кВ та її індекс</th>
<th>Ваговий коефіцієнт оцінки</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Добрий</td>
<td>TO</td>
</tr>
<tr>
<td>Менше 25</td>
<td>Задовільний</td>
<td>КР</td>
</tr>
<tr>
<td>Від 25 до 50</td>
<td>Незадовільний</td>
<td>Реконструкція</td>
</tr>
<tr>
<td>50 і вище</td>
<td>Неприятний</td>
<td>Заміна</td>
</tr>
</tbody>
</table>

Комплексна якісна оцінка технічного стану суккупності ПЛ напругою 0,38 кВ устанавлюється на підставі комплексних якісних оцінок кожної з вхідних у суккупність ПЛ:
\[KDCH = \frac{0 \cdot L_1 + 0,1 \cdot L_2 + 0,3 \cdot L_3 + 0,6 \cdot L_4}{L_1 + L_2 + L_3 + L_4} \cdot 100, \quad (6.14) \]

de \(L_1, L_2, L_3, L_4 \) — сумарні довжини ПЛ напругою 0,38 кВ, що знаходяться відповідно в добруму, задовільному, незадовільному і непридатному технічному стані, км;

0; 0,1; 0,3; 0,6 — вагові коефіцієнти комплексної оцінки технічного стану ПЛ.

Приклад 1. Визначити за (6.13) комплексну якісну оцінку технічного стану однієї ПЛ напругою 0,38 кВ, у якої

\[KDCH = 37,32; \quad KDOK = 74,15; \quad KDZH = 46,36, \]

\[KDN = 0,63 \cdot 37,32 + 0,23 \cdot 74,15 + 0,14 \cdot 46,36 = 47,05. \]

Висновок. Дана ПЛ напругою 0,38 кВ знаходиться в незадовільному стані, тому що її КДН більший 25, але менший 50.

Приклад 2. Порівняти за (6.14) технічний стан ПЛ напругою 0,38 кВ двох населених пунктів за даними, наведеними в таблиці 6.6.

<table>
<thead>
<tr>
<th>Найменування населеного пункту</th>
<th>Довжина ПЛ напругою 0,38 кВ, км, що знаходяться в технічному стані</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>добруму</td>
</tr>
<tr>
<td>с.Тернівка</td>
<td>3,7</td>
</tr>
<tr>
<td>с.Бузок</td>
<td>0</td>
</tr>
</tbody>
</table>

\[KDCH_{Тернівка} = \frac{0 \cdot 3,7 + 0,1 \cdot 1,3 + 0,3 \cdot 6,3 + 0,6 \cdot 0,9}{3,7 + 1,3 + 6,3 + 0,9} \cdot 100 = 20,98; \]

\[KDCH_{Бузок} = \frac{0 \cdot 0 + 0,1 \cdot 9,4 + 0,3 \cdot 1,4 + 0,6 \cdot 0}{0 + 9,4 + 1,4 + 0} \cdot 100 = 12,59. \]

Висновки:

1. Повітряні лінії напругою 0,38 кВ у селах Тернівка і Бузок знаходяться в задовільному стані, тому що КДН_{Тернівка} і КДН_{Бузок} менші 25.
2. Технічний стан ПЛ напругою 0,38 кВ у с. Тернівка гірший, ніж у с. Бузок, тому що КДСН_Тернівка більший, ніж КДСН_Бузок.

7 Кількісна оцінка технічного стану об’єктів

Кількісна оцінка технічного стану об’єкта характеризує сумарну кількість його аварійних автоматичних і змушенних відключень, яку можна чекати в наступному році.

Кількісна оцінка технічного стану об’єкта визначається за даними переліку дефектів його елементів, складеного станом на 31 грудня звітного року на підставі даних, що були зареєстровані в журналі дефектів об’єктів.

Кількісна оцінка технічного стану енергопостачальної компанії/організації визначається для кожного з об’єктів: однієї ПЛ напругою 6—20 кВ, однієї ТП напругою 6—20/0,38 кВ або однієї ПЛ напругою 0,38 кВ.

На підставі кількісної оцінки, отриманої для кожної ПЛ напругою 6—20 кВ, ТП напругою 6—20/0,38 кВ або ПЛ напругою 0,38 кВ, визначаються питомі і середні кількісні оцінки для всіх ПЛ напругою 6—20 кВ, ТП напругою 6—20/0,38 кВ або ПЛ напругою 0,38 кВ відповідно одного населеного пункту тощо.

Кількісні показники ймовірних відключень об’єкта на наступний рік можуть бути визначені за такими формулами:

для ПЛ:

\[
BO_{ВЛj} = \sum_{i=1}^{m} n_{i_{ВЛj}} BД_{i_{ВЛj}}; \quad (7.1)
\]

\[
BO_{ВЛ} = \frac{BO_{ВЛj} \cdot 100}{L_{ВЛj}}; \quad (7.2)
\]

\[
BO_{ВЛc} = \frac{\sum_{j=1}^{k} BO_{ВЛj}}{k}; \quad (7.3)
\]

для ТП:

\[
BO_{ТПj} = \sum_{i=1}^{m} n_{i_{ТПj}} BД_{i_{ТПj}}; \quad (7.4)
\]

\[
BO_{ТП} = \frac{BO_{ТПj}}{k}, \quad (7.5)
\]
де $BO_{обл}$, $BO_{обл}$, $BO_{пл}$, — число ймовірних відключень j-го об’єкта, суккупності об’єктів (округляється до першого знака після коми), відкл/(об’єкт · рік);
$BO_{вл}$, $BO_{вл}$ — питоме число ймовірних відключень j-й ПЛ, суккупності ПЛ (округляється до першого знака після коми), відкл/(100 км · рік);
$VD_{вл}$, $VD_{вл}$ — число ймовірних відключень j-го об’єкта від прояву одного i-го дефекту, відкл/(об’єкт · рік);
$n_{вл}$, $n_{вл}$ — кількість проявів i-го дефекту на j-му об’єкті, шт.;
m — кількість типів дефектів на j-му об’єкті, шт.;
k — кількість однотипних дефектів, шт.;
$L_{вл}$ — довжина j-ї ПЛ по трасі, км.
Значення $VD_{вл}$, $VD_{вл}$ наведено в графі 5 додатків А—В.

Приклад 1. Дани за формулами (6.1) і (6.2) кількісну оцінку технічного стану однієї ПЛ 10 кВ довжиною 23 км, на якій були виявлені дефекти, наведені в таблиці 7.1.

<table>
<thead>
<tr>
<th>Найменування дефекту</th>
<th>Код дефекту</th>
<th>Кількість дефектів $n_{вл}$, шт.</th>
<th>Значення $VD_{вл}$, відн.од.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наявність близько розташованих до проводів дерев</td>
<td>Т41</td>
<td>4</td>
<td>0,5</td>
</tr>
<tr>
<td>Просідання грунту</td>
<td>К12</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Оголення арматури приставки</td>
<td>323</td>
<td>3</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Значення кількісної оцінки для ПЛ 10 кВ

$BO_{пл} = 4 \cdot 0,5 + 1 \cdot 0,2 + 3 \cdot 0,6 = 4,0$ відкл./(ПЛ · рік)

Значення питомої кількісної оцінки для ПЛ-10 кВ

$BO_{пл} = \frac{4 \cdot 100}{25} = 16,0$ відкл./(100 км ПЛ · рік).

Приклад 2. Дани за формулами (6.2) і (6.3) питомі і середньо кількісні оцінки технічного стану п’яти ПЛ 10 кВ, характеристики яких наведено в таблиці 7.2.
Таблиця 7.2

<table>
<thead>
<tr>
<th>Номер ПЛ 10 кВ</th>
<th>Диспетчерський номер ПЛ 10 кВ</th>
<th>Довжина ПЛ 10 кВ км</th>
<th>Значення $BO_{вл_i}$, відкл/(ПЛ·рік)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4А</td>
<td>28</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>3В</td>
<td>36</td>
<td>3,7</td>
</tr>
<tr>
<td>3</td>
<td>4С</td>
<td>22</td>
<td>2,9</td>
</tr>
<tr>
<td>4</td>
<td>7Д</td>
<td>48</td>
<td>5,1</td>
</tr>
<tr>
<td>5</td>
<td>1Е</td>
<td>25</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Значення питомої кількісної оцінки для кожної ПЛ 10 кВ:

$$BO_{пл_1} = \frac{4,5 \cdot 100}{28} = 16,07 \text{ відкл/(100 км ПЛ·рік)};$$

$$BO_{пл_2} = \frac{3,7 \cdot 100}{36} = 10,28 \text{ відкл/(100 км ПЛ·рік)};$$

$$BO_{пл_3} = \frac{2,9 \cdot 100}{22} = 13,18 \text{ відкл/(100 км ПЛ·рік)};$$

$$BO_{пл_4} = \frac{5,1 \cdot 100}{48} = 10,62 \text{ відкл/(100 км ПЛ·рік)};$$

$$BO_{пл_5} = \frac{1,8 \cdot 100}{25} = 7,2 \text{ відкл/(100 км ПЛ·рік)}.$$

Значення середньої кількісної оцінки для п'яти ПЛ 10 кВ

$$BO_{пл_с} = \frac{16,07 + 10,28 + 13,18 + 10,62 + 7,2}{5} = 11,47 \text{ відкл/(100 км ПЛ·рік)}.$$

Значення середньої кількісної оцінки для п'яти ПЛ 10 кВ:

$$BO_{шл_с} = \frac{16,8 + 10,8 + 10,0 + 11,7 + 5,6}{5} = 11,0 \text{ відкл/(100 км ПЛ·рік)}.$$

Приклад 3. Дати за формулою (7.4) кількісну оцінку технічного стану однієї ТП 10/0,38 кВ, на якій були виявлені дефекти, представлений в таблиці 7.3.
Таблиця 7.3

| Найменування дефекту | Код дефекту | Кількість дефектів
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(n_{i}, m_{j}), шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ослаблення бандажа</td>
<td>ДО22</td>
<td>2</td>
</tr>
<tr>
<td>Пошкодження замка</td>
<td>341</td>
<td>1</td>
</tr>
<tr>
<td>Відкол ізолятора роз’єднувача</td>
<td>У71</td>
<td>3</td>
</tr>
<tr>
<td>Значення (BD_{i}, m_{j}), відн.од.</td>
<td></td>
<td>1,0</td>
</tr>
</tbody>
</table>

Значення кількісної оцінки для ТП 10/0,38 кВ

\[
BO_{m_{j}} = 2 \cdot 1,0 + 1 \cdot 1,0 + 3 \cdot 0,6 = 4,8 \text{ відкл.}/(ТП \cdot \text{рік})
\]

Приклад 4. Дати за формулою (7.5) середню кількісну оцінку технічного стану трьох ТП 10/0,38 кВ, характеристики яких наведено в таблиці 7.4.

Таблиця 7.4

<table>
<thead>
<tr>
<th>Номер ТП-10/0,38 кВ</th>
<th>Диспетчерський номер ТП 10/0,38 кВ</th>
<th>Значення (BO_{m_{i}}), відкл. / (ТП \cdot \text{рік})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>4,7</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>3,9</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Значення середньої кількісної оцінки для трьох ТП 10/0,38 кВ

\[
BO_{m_{c}} = \frac{(4,7 + 3,9 + 2,2)}{3} = 3,6 \text{ відкл.}/(ТП \cdot \text{рік})
\]
Додаток А
до п. 5.1 нормативного документа «Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних електричних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі» (обов'язковий)

Перелік характерних дефектів елементів ПЛ напругою 6—20 кВ

Таблиця А.1

<table>
<thead>
<tr>
<th>Код дефекту</th>
<th>Найменування (характеристика) дефекту</th>
<th>Робота з усунення дефекту</th>
<th>Термін усунення дефекту</th>
<th>Імовірність відмовлення об’єкта, відн. од/рік</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Траса ПЛ

| Т10* | Захаращення охоронної зони — наявність у охоронній зоні на відстані 10 м від крайніх проводів скит хліба, соломи, стогів сіна, штабелів торфу, лісо- і пиломатеріалів, складів кормів і добрив, палива, інших пальних матеріалів, спортивних і дитячих площадок, стоянок машин, причалів тощо | Вживання заходів з ліквідації захаращення* | 0,5 |

*Зазначена група дефектів.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20*</td>
<td>Роботи в охоронній зоні (виконання на трасі в охоронній зоні на відстані 10м від крайніх проводів різних робіт сторонніми організаціями без письмового узгодження з енергопостачальною компанією/підприємством)</td>
<td>Вхиляння заходів з негайного припинення робіт*</td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>Недостатня ширина просіки (ширина просіки в лісовому масиві по трасі ПЛ не відповідає вимогам ПУЕ)</td>
<td>Розширення просіки</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td>Наявність дерева (на краю просіки є дерево, що загрожує падінням на проводи)</td>
<td>Вирубування дерева</td>
<td>Під час технічного обслуговування (ТО)</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td>Наявність гілок (на краю просіки є дерево, крона або окремі гілки якого виявилися на відстані, меншій 2 м від проводів)</td>
<td>Обрізування гілок</td>
<td>Під час ТО</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>T43</td>
<td>Наявність чагарнику (під проводами є кущі, поросль, верхня частина крони яких наближена до проводів на відстані, меншій 2 м)</td>
<td>Вирубування чагарнику, хімічне розчищення трави</td>
<td>Те саме</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>T44</td>
<td>Рослинність біля опор (наявність трав'янистої рослинності або чагарнику в зоні радіусом до 2 м біля основи опор)</td>
<td>Обкопування опори, хімічне розчищення трави</td>
<td>» »</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>T50</td>
<td>Зсув (зсув грунту поблизу опор)</td>
<td>Перенесення опори</td>
<td>Під час ремонту</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці A.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T60</td>
<td>Відсутність пікетів (на трасі кабельного переходу не встановлено пікетажні позначки)</td>
<td>Установлення пікетажних позначок на трасі кабельного переходу</td>
<td>Під час ТО</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>T71</td>
<td>Вихід опори з осі ПЛ</td>
<td>Перенесення опори</td>
<td>Під час ремонту</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>T72</td>
<td>Непроектний проліт (довжина проміжного прольоту не відповідає проектові, перевищує розрахунковий)</td>
<td>Установлення додаткової опори (перенесення опори)</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>T74</td>
<td>Непроектне зближення (відстань від крайнього проводу при невідхиленому положенні до споруджень не відповідає проектові, вимогам ПУЕ)</td>
<td>Перенесення проміжного прольоту</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T75</td>
<td>Опора поблизу проїзної частини (відстань між опорою і дорогою або проїзною частиною вулиці менше встановленого ПУЕ)</td>
<td>Установлення відбійної тумби</td>
<td></td>
<td>0,7</td>
<td></td>
</tr>
</tbody>
</table>

Кріплення опори, стойки, траверси, гака, ізолятора на стойці опори, проводу

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K11</td>
<td>Недостатнє заглиблення опори (заглиблення опори в грунті менш передбаченого проектом ПЛ)</td>
<td>Перебудова закріплення опори в грунті</td>
<td></td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>Просідання грунту (зниження рівня грунту внаслідок незадовільного трамбування, тріщини в грунті, розмивання грунту в основі опори)</td>
<td>Підтрамбовування і підсипання грунту</td>
<td></td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці A.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K13</td>
<td>Подовжній вигин залізобетонної стійки опори (відхилення верхнього кінця стійки від вертикальної осі удовж лінії перевищує 0,5м)</td>
<td>Постава опори</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K14</td>
<td>Поперечний вигин залізобетонної стійки опори (відхилення верхнього кінця стійки від вертикальної осі поперек лінії перевищує 0,5м)</td>
<td>Постава опори</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K21</td>
<td>Обрив бандажа (обрив дротів бандажа, що кріпить стійку до приставки)</td>
<td>Заміна бандажа</td>
<td>Під час ТО</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K22</td>
<td>Ослаблення бандажа (ослаблення дротового бандажа, хомута кріплення стійки до приставки, що викликало прослизання або нахил стійки зверх норми)</td>
<td>Підтягування бандажа і поставка опори</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K23</td>
<td>Корозія бандажа (поверхнева корозія бандажа, хомута кріплення стійки до приставки)</td>
<td>Фарбування бандажа</td>
<td>» »</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>K24</td>
<td>Ослаблення кріплення підкоса</td>
<td>Підтягування кріплення підкоса</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K31</td>
<td>Перекіс траверси (відхилення траверси від горизонтального положення на кут понад 15°)</td>
<td>Постава траверси</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K41*</td>
<td>Випадання гака (штиря)</td>
<td>Закріплення гака (штиря)</td>
<td></td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>K42</td>
<td>Ослаблення гака (штиря)</td>
<td>Закріплення гака (штиря)</td>
<td>Під час ремонту</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>K51*</td>
<td>Зрив ізолятора</td>
<td>Установлення і закріплення ізолятора</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Код</td>
<td>Опис операції</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>K61*</td>
<td>Обрив в'язання</td>
<td></td>
<td></td>
<td>Заміна в'язання*</td>
</tr>
<tr>
<td></td>
<td>K71*</td>
<td>Пошкодження кріплення шлейфа (осlabлення, корозія, іскріння контакту в шлейфі)</td>
<td></td>
<td></td>
<td>Заміна шлейфа*</td>
</tr>
<tr>
<td></td>
<td>K81</td>
<td>Пошкодження кріплення муфти (осlabлення, пошкодження кріплення муфти кабельного переходу на опорі, відсутність муфти там, де вона повинна бути)</td>
<td></td>
<td></td>
<td>Заміна кріплення муфти</td>
</tr>
</tbody>
</table>

Приставка, стійка, підкіс

<table>
<thead>
<tr>
<th>№</th>
<th>Код</th>
<th>Опис операції</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C10*</td>
<td>Відсутність нумерації (відсутність умовних позначок, нумерації опор, попереджувальних плакатів на опорах)</td>
<td></td>
<td></td>
<td>Відновлення нумерації, плакатів*</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C21</td>
<td>Загнивання дерев'яної приставки (зменшення діаметра в результаті загнивання понад припустимий) або розтріскування залізобетонної приставки (тріщини розкрит-тям 0,5 см і більш сумарною довжиною понад 1,0 м)</td>
<td></td>
<td></td>
<td>Заміна приставки</td>
<td>Те саме</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>C22</td>
<td>Обгорання приставки (обгорання дерев'яної приставки в результаті низької пожежі, діаметр частини, що залишилася, менше припустимого)</td>
<td></td>
<td></td>
<td>Те саме</td>
<td>» »</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>C23</td>
<td>Оголення арматури приставки (відкол захисного шару бетону з оголенням стрижнів залізобетонної арматури понад 1 м)</td>
<td></td>
<td></td>
<td>» »</td>
<td>» »</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>C24</td>
<td>Розтріскування бетону приставки (тріщини в бетоні залізобетонної приставки розкриттям 0,5 мм і більше сумарною довжиною понад 1м)</td>
<td></td>
<td></td>
<td>Заміна приставки</td>
<td>» »</td>
<td>0,4</td>
</tr>
</tbody>
</table>
Продовження таблиці A.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C31</td>
<td>Загнивання дерев'яної стійки (зменшення її діаметра внаслідок загнивання понад припустимий) або розтріскування залізобетонної стійки (тріщини розкриттям 0,5 см і більш сумарною довжиною понад 1 м)</td>
<td>Заміна стійки</td>
<td>Під час ремонту</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>Обгорання стійки (обгорання дерев'яної стійки в результаті впливу струмів витоку або після низової пожежі; діаметр частини, що залишилася, менше припустимого)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>Оголення арматури стійки (відкол захисного шару з оголенням стрижнів подовжньої арматури понад 1 м)</td>
<td></td>
<td></td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>Розтріскування бетону стійки (тріщини розкриттям 0,5 мм і більш сумарною довжиною понад 1 м)</td>
<td></td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>Прогин стійки (вигин залізобетонної стійки, що викликав відхилення вершини від вертикалі понад 0,5 м)</td>
<td></td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>Загнивання підкоса (загнивання дерев'яного підкоса, при якому діаметр частини, що залишилася, менше припустимого); тріщини в підкосі розкриттям 0,5 см і більш довжиною понад 1,5 м</td>
<td>Заміна підкоса</td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>Обгорання підкоса (обгорання дерев'яного підкоса в результаті впливу струмів витоку або низової пожежі)</td>
<td>Те саме</td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>Оголення арматури підкоса (відкол захисного шару бетону з оголення стрижнів поздовжньої арматури довжиною понад 1 м)</td>
<td></td>
<td></td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>Розтріскування бетону підкоса (тріщини в бетоні залізобетонного підкоса розкриттям 0,5 мм і більш сумарною довжиною понад 1 м)</td>
<td>Заміна підкоса</td>
<td></td>
<td>0,3</td>
<td></td>
</tr>
</tbody>
</table>

Траверса, гак, ізолятор на траверсі

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I11</td>
<td>Загнивання траверси (зменшення поперечної перерізу дерев'яної траверси більш ніж на 30 %); тріщини в траверсі розкриттям 1 см і більше сумарною довжиною понад 0,5 м</td>
<td>Заміна траверси</td>
<td></td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>I12</td>
<td>Корозія траверси (наскрізне іржавіння металевої траверси, видиме з землі)</td>
<td>Те саме</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>I13*</td>
<td>Руйнування траверси</td>
<td>» »*)</td>
<td>Те саме</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>I14</td>
<td>Прогин траверси (вигин металевої траверси, видимий із землі)</td>
<td>» »</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>I21</td>
<td>Вигин гака, штиря (деформація гака, штиря, видима з землі)</td>
<td>Заміна гака, штиря</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>I22*</td>
<td>Злам гака, штиря</td>
<td>Те саме*)</td>
<td>» »</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>I31</td>
<td>Відкол ізолятора (відколи на поверхні ізолятора сумарною площею понад 1 см²)</td>
<td>Заміна ізолятора</td>
<td>» »</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>I32</td>
<td>Забруднення ізолятора (забруднення поверхні ізолятора, видиме з землі)</td>
<td>Те саме</td>
<td>» »</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>I33*</td>
<td>Руйнування ізолятора</td>
<td>» »*)</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I34</td>
<td>Непроектний ізолятор (ізолятор не відповідає проекту або вимогам чинних НД)</td>
<td>» »</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>

Примітка:
П11* Накид на провід ПЛ | Видалення накиду* | » » | 0,4 |
П12 Обрив дроту (обрив одного дроту верхнього повиву, видимий із землі) | Накладення бандажа | » » | 0,4 |
П13 Обрив проволоки (обрив двох дротів верхнього повиву й більше, случування верхнього повиву — «ліхтар», «баранчик» на проводі) | Вирізування дефектної ділянки та установлення ремонтної вставки | » » | 0,7 |
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>П14*</td>
<td>З'єднання проводу скруткою</td>
<td>Установлення з'єднувача</td>
<td></td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>П21</td>
<td>Провисання проводу на перетинанні (зменшення відстані по вертикала від проводу до пересічних об'єктів нижче значення, регламентованого ПУЕ)</td>
<td>Перетягування проводу</td>
<td>Під час ремонту</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>П31</td>
<td>Відкол ізолятора муфти (відкол поверхні ізолятора кабельної муфти сумарною площею понад 1 см²)</td>
<td>Заміна ізолятора муфти</td>
<td>Те саме*</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>П32</td>
<td>Забруднення ізолятора муфти (забруднення поверхні ізолятора кабельної муфти, видиме з землі)</td>
<td>Те саме*</td>
<td></td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>П33*</td>
<td>Руйнування ізолятора муфти</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>П36*</td>
<td>Пошкодження муфти (пошкодження корпуса муфти, тексти кабельної маси тощо)</td>
<td>Заміна муфти*</td>
<td></td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>П37</td>
<td>Відсутність захисту кабелю (металеві кутники, що захищують кабель на опорі від механічних пошкоджень, пошкоджені або відсутні)</td>
<td>Установлення кутників</td>
<td>Під час TO</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>П41</td>
<td>Корозія проводу (суцільна корозія поверхні проводу, що викликала зменшення діаметра проводу на 10 % і більше)</td>
<td>Заміна проводу</td>
<td>Під час ремонту</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>П42</td>
<td>Розтягування проводу (зменшення діаметра проводу на 10 % і більше)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>П43</td>
<td>Непроектний провід (перетин або марка не відповідають проектові або вимогам ПУЕ)</td>
<td></td>
<td></td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Дефект шлейфа (обрив дротів шлейфа, корозія шлейфа, недостатня або завищена довжина шлейфа)</td>
<td></td>
<td></td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>П52</td>
<td>Пошкодження ізоляційного покриття захищеного проводу</td>
<td>Відновлення покриття</td>
<td></td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці A.1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>П53*</td>
<td>Пошкодження анкерного або відгалужувального затиску</td>
<td>Заміна затиску*</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Заземлювальний пристрій

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>У11</td>
<td>Обрив заземлювального спуску</td>
<td>Заміна заземлювального спуску</td>
<td>Під час ремонту</td>
<td>0,1</td>
</tr>
<tr>
<td>У21</td>
<td>Опір заземлення вище норми</td>
<td>Монтаж додаткового заземлення</td>
<td>Те саме</td>
<td>0,1</td>
</tr>
<tr>
<td>У31</td>
<td>Руйнування контуру заземлення</td>
<td>Заміна заземлювального контуру</td>
<td>» »</td>
<td>0,1</td>
</tr>
<tr>
<td>У32</td>
<td>Порушення контакту заземлення (відсутність контакту між заземлювальним спуском і арматурою опори, контуром заземлення)</td>
<td>Відновлення заземлювального контуру</td>
<td>» »</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Комутаційні апарати, розрядники

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>А11*</td>
<td>Шунт пошкодженого роз'єднувача</td>
<td>Заміна роз'єднувача*</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>А12*</td>
<td>Пошкодження приводу роз'єднувача (залам або відсутність деталей приводу роз'єднувача)</td>
<td>Заміна приводу*</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>А13*</td>
<td>Дефект контактів роз'єднувача (обгорання ножів і губок роз'єднувача; іскріння контактів, перекіс ножів тощо)</td>
<td>Заміна роз'єднувача*</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>А31</td>
<td>Відкол ізолятора роз'єднувача (відкол поверхні ізолятора роз'єднувача площею понад 1 см²)</td>
<td>Заміна ізолятора роз'єднувача</td>
<td>» »</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Закінчення таблиці А.1

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A32</td>
<td>Забруднення ізолятора роз'єднувача (забруднення поверхні ізолятора, видиме з землі)</td>
<td>Чищення ізолятора роз'єднувача</td>
<td>Під час ТЕ</td>
<td>0,8</td>
</tr>
<tr>
<td>A34</td>
<td>Непроектний ізолятор роз'єднувача (ізолятор не відповідає вимогам чинних НД)</td>
<td>Заміна ізолятора роз'єднувача</td>
<td>Під час ремонту</td>
<td>0,2</td>
</tr>
<tr>
<td>A41</td>
<td>Перекіс розрядника (розрегулювання розрядника, видиме з землі)</td>
<td>Регулювання розрядника</td>
<td>Під час ТЕ</td>
<td>0,3</td>
</tr>
<tr>
<td>A42*</td>
<td>Руйнування розрядника</td>
<td>Заміна розрядника*</td>
<td>Те саме</td>
<td>0,7</td>
</tr>
</tbody>
</table>

1) Робота повинна виконуватися негайно.
Додаток Б
до п. 5.1 нормативного документа
«Методичні вказівки з обліку та аналізу
в енергосистемах технічного стану розпо-
дільних електричних мереж напругою
0,38—20 кВ з повітряними лініями
електропередачі»
(обов’язковий)

Перелік характерних дефектів елементів ТП напругою 6—20/0,38 кВ,
РП напругою 6—20 кВ

Таблиця Б.1

<p>| Код дефек- | Найменування (характеристика) дефекту | Робота з усунення дефекту | Термін усунення дефекту | Імовірність відмовлення об’єкта, відн. од/рік |</p>
<table>
<thead>
<tr>
<th>дефекту</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Площаадка ТП

<table>
<thead>
<tr>
<th>Т10*</th>
<th>Захаращення площадки (наявність на площаці ТП у радіусі 10 м сторонніх матеріалів, устаткування, а поблизу ТП — захаращення проїздів і проходів)</th>
<th>Вживання заходів з ліквідації захаращення*</th>
<th>0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Т20*</td>
<td>Провадження робіт поблизу ТП (виконання сторонніми організаціями в безпосередній близькості до ТП завантажувально- розвантажувальних і будівельних робіт)</td>
<td>Вживання заходів з негайного припинення робіт*</td>
<td>0,5</td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T41</td>
<td>Наявність дерев (на площадці і поблизу ТП — дерев, що загрожують падінням на ТП; гілок дерев, що стосуються ТП)</td>
<td>Вирубування дерев, зрізання гілок</td>
<td>Під час ТО</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>T43</td>
<td>Чагарник (на площадці)</td>
<td>Вирубування чагарника</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>

Кріплення, закладення в грунті, ущільнення

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K11</td>
<td>Непроектне заглиблення опори (заглиблення опори будівельної частини в грунті, менше передбаченого проектом)</td>
<td>Закріплення основ опор будівельної частини</td>
<td>Під час ремонту</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>Просідання грунту (зниження рівня грунту, розмив грунту в основі опори)</td>
<td>Підтримовування і підсипання грунту</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>Нахил конструкцій (відхилення конструкцій будівельної частини від вертикальної більш 50)</td>
<td>Постава конструкцій</td>
<td>" "</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>K21</td>
<td>Обрив бандажа (обрив одного і більш витків дротового бандажа кріплень стійки до приставки)</td>
<td>Заміна бандажа</td>
<td>" "</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>K22</td>
<td>Ослаблення бандажа (ослаблення дротового бандажа, хомута кріплення стійки до приставки, що викликало нахил конструкцій будівельної частини)</td>
<td>Підтягування бандажа і постава конструкцій</td>
<td>Під час ТО</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K23</td>
<td>Корозія бандажа (поверхнева корозія бандажа, хомута кріплення стійки до приставки)</td>
<td>Фарбування бандажа</td>
<td>Те саме</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>K32</td>
<td>Пошкодження площадки трансформатора (пошкодження, ослаблення, відсутності вузла кріплення площадки трансформатора)</td>
<td>Заміна вузла кріплення площадки трансформатора</td>
<td>Під час ремонту</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Опис операції</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>K41*</td>
<td>Випадання штiryя</td>
<td></td>
<td>Закріплення штiryя*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K51*</td>
<td>Зрив штирьового ізолятора</td>
<td></td>
<td>Закріплення штiryового ізолятора*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K61*</td>
<td>Обрив в'язання (повне пошкодження дротового в'язання кріплення спуска до ізолятора)</td>
<td></td>
<td>Заміна в'язання*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K71*</td>
<td>Пошкодження кріплення шлейфа (ослаблення, корозія, іскріння контакту шлейфа 6—20 кВ)</td>
<td></td>
<td>Заміна кріплення шлейфа</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K72*</td>
<td>Пошкодження кріплення спуска (ослаблення, корозія, іскріння контакту і спуска 6—20 кВ)</td>
<td></td>
<td>Заміна кріплення спуска</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K81</td>
<td>Пошкодження кріплення муфти (ослаблення, пошкодження кріплення муфти кабельного введення)</td>
<td></td>
<td>Заміна кріплення муфти</td>
<td>Під час ремонту</td>
<td></td>
</tr>
<tr>
<td>K91*</td>
<td>Пошкодження петель дверей</td>
<td></td>
<td>Заміна петель*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K92</td>
<td>Пошкодження ущільнювачів дверей (відсутність, обрив, розтріскування ущільнювачів дверей, стінок)</td>
<td></td>
<td>Заміна ущільнювачів дверей</td>
<td>Під час TO</td>
<td></td>
</tr>
<tr>
<td>K93</td>
<td>Теча даху ЗТП</td>
<td></td>
<td>Усунення течі</td>
<td>Те саме</td>
<td></td>
</tr>
</tbody>
</table>

Будівельна частина

<p>| С21 | Загнивання дерев'яної приставки (зменшення її діаметра через загнивання понад припустимий) або розтріскування приставки (тріщини розкриттям 0,5 см і більш сумарною довжиною понад 1 м) | | Заміна дерев'яної приставки | Під час ремонту | |</p>
<table>
<thead>
<tr>
<th>№</th>
<th>Опис операції</th>
<th>Відповіді</th>
<th>Загальні рекомендації</th>
<th>Коефіцієнт впливу</th>
</tr>
</thead>
<tbody>
<tr>
<td>C22</td>
<td>Обгорання приставки (обгорання дерев'яної приставки, при якому діаметр частини, що залишилася, менше припустимого)</td>
<td>Заміна приставки</td>
<td>Під час ремонту</td>
<td>0,4</td>
</tr>
<tr>
<td>C23</td>
<td>Оголення арматури приставки (відкол захисного шару бетону з оголенням стрижнів подовжньої арматури приставки понад 1 м)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,6</td>
</tr>
<tr>
<td>C24</td>
<td>Розтріскування бетону приставки (тріщини в бетоні приставки розкриттям 0,5 мм і більш сумарною довжиною понад 1 м)</td>
<td>» »</td>
<td>» »</td>
<td>0,2</td>
</tr>
<tr>
<td>C31</td>
<td>Загнивання дерев'яної стійки (зменшення її діаметра внаслідок загнивання понад мінімально припустимий) або розтріскування стійки (тріщини розкриттям 0,5 см і більш сумарною довжиною понад 1,5 м)</td>
<td>Заміна дерев'яної стійки</td>
<td>» »</td>
<td>0,4</td>
</tr>
<tr>
<td>C32</td>
<td>Обгорання стійки (у результаті обгорання дерев'яної стійки діаметр частини, що залишилася, менше припустимого значення)</td>
<td>Заміна стійки</td>
<td>» »</td>
<td>0,4</td>
</tr>
<tr>
<td>C33</td>
<td>Оголення арматури стійки (відкол захисного шару бетону з оголенням стрижнів поздовжньої арматури понад 1 м)</td>
<td>Те саме</td>
<td>» »</td>
<td>0,3</td>
</tr>
<tr>
<td>C34</td>
<td>Розтріскування бетону стійки (тріщини в бетоні залізобетонної стійки розкриттям 0,5 мм і більше сумарною довжиною понад 1 м)</td>
<td>» »</td>
<td>» »</td>
<td>0,2</td>
</tr>
<tr>
<td>C35</td>
<td>Прогин стійки (вигин залізобетонної стійки, що викликав відхилення будівельної частини від вертикальі вище 50)</td>
<td>» »</td>
<td>» »</td>
<td>0,1</td>
</tr>
<tr>
<td>C41*</td>
<td>Пошкодження замка</td>
<td>Заміна замка*</td>
<td></td>
<td>1,0</td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C42*</td>
<td>Пошкодження дверей, стінок РП (пошкодження дверей, стінок РП 6−20 кВ)</td>
<td>Заміна дверей, стінок*</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>C43*</td>
<td>Пошкодження дверей низьковольтного щита (пошкодження дверей, стінок РП 0,38 кВ)</td>
<td>Те саме</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>C51</td>
<td>Корозія корпуса (поверхнева корозія корпуса КТП)</td>
<td>Фарбування корпуса</td>
<td>Під час ремонту</td>
<td>0,2</td>
</tr>
<tr>
<td>C52</td>
<td>Наскрізна корозія корпуса КТП</td>
<td>Заміна корпуса</td>
<td>Те саме</td>
<td>0,6</td>
</tr>
<tr>
<td>C61</td>
<td>Загнивання траверси (зменшення поперечного перерізу дерев'яної траверси більш ніж на 30 %; тріщини в тра-версі розкриттям 1 см і більше довжиною понад 0,5 м)</td>
<td>Заміна траверси</td>
<td>" "</td>
<td>0,6</td>
</tr>
<tr>
<td>C62</td>
<td>Наскрізна корозія траверси</td>
<td>Те саме</td>
<td>" "</td>
<td>0,4</td>
</tr>
<tr>
<td>C63*</td>
<td>Руйнування траверси</td>
<td>" "</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>C64</td>
<td>Прогин металевої траверси</td>
<td>" "</td>
<td>" "</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Розподільний пристрій високої напруги (УВН 6−20 кВ, РП 6−20 кВ)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10*</td>
<td>Відсутність нумерації (відсутність диспетчерських позначень у РП 6−20 кВ)</td>
<td>Нанесення нумерації*</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>B11*</td>
<td>Відсутність плакатів (відсутність попередчужальних плакатів у РП 6−20 кВ)</td>
<td>Відновлення плакатів*</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>B12*</td>
<td>Накид на струмоведучі частини (наявність у РП 6−20 кВ сторонніх предметів*)</td>
<td>Видалення сторонніх предметів*</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B21</td>
<td>Відкол штывового ізолятора (відколи на поверхні штывового ізолятора сумарною площею понад 1см2)</td>
<td>Заміна штывового ізолятора*</td>
<td>Чищення, заміна штывового ізолятора</td>
<td>Те саме</td>
<td>0,6</td>
</tr>
<tr>
<td>B32</td>
<td>Забруднення штывового ізолятора</td>
<td></td>
<td></td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>B33*</td>
<td>Руйнування штывового ізолятора</td>
<td>Заміна ізолятора*</td>
<td></td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td>B41</td>
<td>Відкол прохідного ізолятора (відколи на поверхні прохідного ізолятора сумарною площею понад 1см2)</td>
<td>Те саме</td>
<td></td>
<td>Під час TO</td>
<td>0,9</td>
</tr>
<tr>
<td>B43*</td>
<td>Руйнування прохідного ізолятора</td>
<td>«»</td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B46</td>
<td>Пошкодження ущільнення прохідного ізолятора</td>
<td>Заміна ущільнення прохідного ізолятора</td>
<td></td>
<td>Під час ремонту</td>
<td>0,6</td>
</tr>
<tr>
<td>B51</td>
<td>Відкол ізолятора муфти (відколи ізолятора муфти кабельного введення 6-20 кВ сумарною площею понад 1см2)</td>
<td>Заміна ізолятора муфти</td>
<td></td>
<td>Те саме</td>
<td>0,5</td>
</tr>
<tr>
<td>B52</td>
<td>Забруднення ізолятора муфти (забруднення поверхні ізолятора муфти кабельного введення 6—20 кВ, видиме з землі)</td>
<td>Чищення, заміна ізолятора муфти*</td>
<td></td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>B53*</td>
<td>Руйнування ізолятора муфти</td>
<td>Заміна ізолятора муфти*</td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B56*</td>
<td>Пошкодження муфти (пошкодження корпуса муфти кабельного введення 6—20 кВ)</td>
<td>Заміна муфти*</td>
<td></td>
<td></td>
<td>0,8</td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B57</td>
<td>Відсутність захисту кабелю (відсутність металевих кутчиків, що захищають кабель на опорі від механічних пошкоджень)</td>
<td>Монтаж захисту від механічних пошкоджень</td>
<td>Під час ТО</td>
<td>0,4</td>
</tr>
<tr>
<td>B61*</td>
<td>Шунт пошкодженого роз'єднувача</td>
<td>Заміна роз'єднувача*</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B62*</td>
<td>Пошкодження приводу (злам або відсутність деталей приводу роз'єднувача)</td>
<td>Ремонт, заміна приводу*</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B63*</td>
<td>Дефект контактів роз'єднувача (обгорання ножів і губок роз'єднувача, іскріння контактів, перекіс ножів)</td>
<td>Заміна елементів роз'єднувача цілком*</td>
<td></td>
<td>0,7</td>
</tr>
<tr>
<td>B71</td>
<td>Відкол ізолятора роз'єднувача (відколи на поверхні ізолятора сумарною площею понад 1 см²)</td>
<td>Заміна ізолятора роз'єднувача</td>
<td>Під час ремонту</td>
<td>0,6</td>
</tr>
<tr>
<td>B72</td>
<td>Забруднення ізолятора роз'єднувача (забруднення поверхні ізолятора, видиме з землі)</td>
<td>Чищення, заміна ізолятора роз'єднувача</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>B73*</td>
<td>Руйнування ізолятора роз'єднувача</td>
<td>Заміна ізолятора роз'єднувача*</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B74</td>
<td>Непроектний ізолятор роз'єднувача (ізолятор не відповідає проектові або вимогам діючих нормативних документів)</td>
<td>Те саме</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>B75*</td>
<td>Пошкодження механізму приводу роз'єднувача (пружини соленоїда, блоку керування)</td>
<td>Заміна приводу роз'єднувача*</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>B81*</td>
<td>Пошкодження запобіжника (пошкодження або відсутність запобіжника в РП 6—20 кВ)</td>
<td>Заміна (установка) запобіжника*</td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>B82</td>
<td>Перекіс розрядника (розрегулювання розрядника в РП 6—20 кВ, видиме з землі)</td>
<td>Регулювання розрядника</td>
<td></td>
<td>0,3</td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B83*</td>
<td>Руйнування розрядника або обмежувача перенапруги (ОПН)</td>
<td>Заміна розрядника, ОПН*</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>B91*</td>
<td>Руйнування ізолятора силового вимикача, автогазового вимикача навантаження, контактора</td>
<td>Заміна ізолятора ви-микача, контактора*</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>B92*</td>
<td>Пошкодження полюса силового вимикача (витік олії, втрата вакууму, наднормативний витік елегаза)</td>
<td>Заміна полюса вимикача*</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>B93*</td>
<td>Пошкодження полюса автогазового вимикача навантаження (приварка контактів, поломка дугогасної камери)</td>
<td>Заміна полюса автогазового вимикача*</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>B94</td>
<td>Пошкодження дугогасного вкладиш автогазового вимикача навантаження</td>
<td>Заміна дугогасного вкладиш автогазового вимикача навантаження</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>B95*</td>
<td>Пошкодження елегазового силового вимикача, вимикача навантаження, контактора</td>
<td>Заміна вимикача, контактора*</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>B96*</td>
<td>Пошкодження тяги приводу силового вимикача, вимикача навантаження, контактора</td>
<td>Заміна тяги вимикача, контактора*</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>B97*</td>
<td>Пошкодження механізму приводу вимикача, контактора (пружини, соленоїда, блока керування)</td>
<td>Заміна приводу, елемента вимикача, контактора*</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>B98*</td>
<td>Руйнування елегазового силового вимикача, вимикача навантаження, контактора (понаднормативний витік елегазу)</td>
<td>Заміна вимикача, контактора*</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Силовий трансформатор</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Я11</td>
<td>Термін служби трансформатора більше 25 років, навантаження перевищує припустиме</td>
<td>Заміна трансформатора</td>
<td>Під час ремонту</td>
<td>0,6</td>
</tr>
<tr>
<td>Я12</td>
<td>Пошкодження введення 6—20 кВ</td>
<td>Заміна введення</td>
<td>Те саме</td>
<td>0,7</td>
</tr>
<tr>
<td>Я13</td>
<td>Витік олії</td>
<td>Заміна ущільнення</td>
<td>Під час ТО</td>
<td>0,6</td>
</tr>
<tr>
<td>Я14</td>
<td>Зниження рівня олії</td>
<td>Доливання олії</td>
<td>Те саме</td>
<td>0,5</td>
</tr>
<tr>
<td>Я15</td>
<td>Пошкодження введення 0,38 кВ</td>
<td>Заміна введення</td>
<td>Під час ремонту</td>
<td>0,3</td>
</tr>
<tr>
<td>Я16</td>
<td>Забруднення корпусу трансформатора</td>
<td>Чищення корпусу трансформатора</td>
<td>Те саме</td>
<td>0,2</td>
</tr>
<tr>
<td>Я17</td>
<td>Дефект контакту введення (перерівнання, ослаблення контакту введення трансформатора)</td>
<td>Заміна, підтяжка контакту введення</td>
<td>Під час ТО</td>
<td>0,4</td>
</tr>
<tr>
<td>Я18</td>
<td>Підвищений шум трансформатора</td>
<td>Заміна трансформатора</td>
<td>Під час ремонту</td>
<td>0,5</td>
</tr>
<tr>
<td>Я19</td>
<td>Обрив нульової шини</td>
<td>Відновлення контакту, заміна нульової шини</td>
<td>Під час ТО</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Розподільний пристрій НН (РПНН 0,38 кВ, РП 0,38 кВ)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Н10*</td>
<td>Відсутність нумерацій (відсутність диспетчерських позначень у РП 0,38 кВ)</td>
<td>Нанесення нумерації*</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Н11*</td>
<td>Відсутність плакатів (відсутність попереджувальних плакатів у РП 0,38 кВ)</td>
<td>Відновлення плакатів*</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>H12</td>
<td>Накид (наявність у РП 0,38 кВ сторонніх предметів)</td>
<td>Видалення сторонніх предметів</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>H21</td>
<td>Пошкодження спуску (обрив дротів, корозія, застосування непроектного проводу; недостатня або завищена довжина спуска 0,38 кВ)</td>
<td>Заміна спуску*</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>H31</td>
<td>Перегрівання контактів (потемніння контактів у РП 0,38 кВ)</td>
<td>Заміна контактів</td>
<td>Під час ремонту</td>
<td>0,3</td>
</tr>
<tr>
<td>H32</td>
<td>Пошкодження контактів (перегоряння, обрив контактів у РП 0,38 кВ)</td>
<td>Те саме</td>
<td>Під час ТО</td>
<td>0,4</td>
</tr>
<tr>
<td>H41</td>
<td>Пошкодження рубильника</td>
<td>Заміна рубильника</td>
<td>Під час ремонту</td>
<td>0,3</td>
</tr>
<tr>
<td>H42</td>
<td>Пошкодження запобіжника (перегоряння плавкої вставки, відсутність патрона запобіжника в РП 0,38 кВ)</td>
<td>Заміна, установлення запобіжника*</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>H43</td>
<td>Пошкодження вимикача (пошкодження або відсутність автоматичного вимикача)</td>
<td>Заміна, установлення вимикача*</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>H44</td>
<td>Перекіс розрядника (розрегулювання розрядника в РП 0,38 кВ)</td>
<td>Регулювання розрядника</td>
<td>Під час ТО</td>
<td>0,2</td>
</tr>
<tr>
<td>H45</td>
<td>Руйнування розрядника, обмежника напруги</td>
<td>Заміна розрядника, ОПН*</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>H56</td>
<td>Пошкодження муфти (пошкодження корпусу муфти кабельного введення 0,38 кВ)</td>
<td>Заміна муфти</td>
<td>Під час ремонту</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Н57 Відсутність захисту кабелю (відсутність металевих куточків, що захищають кабельне введення на опорі від механічних пошкоджень)</td>
<td>Установлення захисту кабелю від механічних пошкоджень</td>
<td>Під час ТО</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>Н61 Пошкодження трансформатора струму (пошкодження, відсутність трансформатора струму)</td>
<td>Заміна, установлення трансформатора струму</td>
<td>Те саме</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>Н62 Пошкодження лічильника електричної енергії (пошкодження, відсутність лічильника електричної енергії)</td>
<td>Заміна, установлення лічильника электроенергії</td>
<td>« »</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>Н63 Пошкодження пристрою підігріву лічильника електричної енергії в РП 0,38 кВ</td>
<td>Заміна пристрою підігріву лічильника электроенергії</td>
<td>« »</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>Н64 Пошкодження пристрою автоматичного включення вуличного освітлення - ПАВВО (пошкодження, відсутність)</td>
<td>Заміна, установлення ПАВВО</td>
<td>« »</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Заземлювальний пристрій</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>У11 Пошкодження заземлення корпусу, оболонки ТП</td>
<td>Заміна заземлення корпусу, оболонки ТП</td>
<td>У12 Пошкодження заземлення трансформатора</td>
<td>У12 Пошкодження заземлення трансформатора</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Y21</td>
<td>Опір заземлення вище норми</td>
<td>Заходи щодо зниження опору ланцюга контуру, що заземлює, монтаж додаткового заземлення</td>
<td>Під час ремонту</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Y31</td>
<td>Руйнування контуру заземлення</td>
<td>Заміна контуру заземлення</td>
<td>Те саме</td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>

* Робота повинна виконуватися негайно
Додаток В

do п. 5.1 нормативного документа

«Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних електричних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі»

(обов'язковий)

Перелік характерних дефектів елементів ПЛ напругою 0,38 кВ

<table>
<thead>
<tr>
<th>Код дефекту</th>
<th>Найменування (характеристика) дефекту</th>
<th>Робота з усунення дефекту</th>
<th>Термін усунення дефекту</th>
<th>Імовірність відмовлення об'єкта, відн. од/рік</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Т10*</td>
<td>Захаращення охоронної зони (наявність у охоронній зоні на відстані 2 м від крайніх проводів при невідхиленому їх положенні скирт хліба, наметів соломи, стогів сіна, штабелів, торфу лісо- і пиломатеріалів, складів кормів і добрий, палива, інших пальних матеріалів, спортивних і дитячих площадок, стоянок машин, причалів тощо)</td>
<td>Вживання заходів з ліквідації захаращення*</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Т20*</td>
<td>Роботи в охоронній зоні (виконання на трасі в охоронній зоні різних робіт сторонніми організаціями без письмового угодження з РЕМ (ЕМ))</td>
<td>Вживання заходів з негайного припинення робіт*</td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>Т41</td>
<td>Наявність дерева (на краю просікі є дерево, що загрожує падінням на проводи)</td>
<td>Вирубування дерева</td>
<td>Під час TO</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Траса ПЛ
Продовження таблиці В.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T42</td>
<td>Наявність гілок (на краю просікі є дерево, крона або окремі гілки якого наблизилися до проводів на відстані менше 1 м)</td>
<td>Обрізування гілок</td>
<td>Під час ТО</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>T43</td>
<td>Наявність чагарнику (під проводами є кущі (поросль), верхня частина крони яких наближена до проводів на відстані менш 1 м)</td>
<td>Вирубування чагарнику, хімічне розчищення траси</td>
<td>Те саме</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>T71</td>
<td>Вихід опори з осі ПЛ</td>
<td>Перенесення опори</td>
<td>Під час ремонту</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>T72</td>
<td>Непроектний прольот (довжина проміжного прольоту не відповідає проектові, перевищує розрахунковий)</td>
<td>Установлення додаткової опори, перенесення опори</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>T74</td>
<td>Непроектне зближення (відстань від крайнього проводу при невідхиленому положенні до споруджень не відповідає проектові, вимогам ПУЕ)</td>
<td>Перенесення опор проміжного прольоту</td>
<td>» »</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>T75</td>
<td>Опора поблизу проїзної частини (відстань між опорою і дорогою або проїзною частиною вулиці менше встановленого ПУЕ)</td>
<td>Установлення відбійної тумби</td>
<td>» »</td>
<td>0,7</td>
<td></td>
</tr>
</tbody>
</table>

Кріплення опори, стійки, траверси, гака, ізолятора, проводу

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K11</td>
<td>Недостатнє заглиблення (заглиблення опори в грунті менш передбаченого проектом)</td>
<td>Перебудова закріплення опори в грунті</td>
<td>Під час ремонту</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>Просідання грунту (зниження рівня грунту внаслідок незадовільного трамбування, тріщини в грунті, розмивання грунту в основі опори)</td>
<td>Підтримбування і підсипання грунту</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>Поздовжній вигин залізобетонної стійки опори (відхилення верхнього кінця стійки від вертикальної осі вздовж лінії перевищує 0,5 м)</td>
<td>Постава опори</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K14</td>
<td>Поперечний вигин залізобетонної стійки опори (відхилення верхнього кінця стійки від вертикальної осі поперек лінії перевищує 0,5 м)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K21</td>
<td>Обрив бандажа (обрив дротів бандажа, що кріпить стійку до приставки)</td>
<td>Заміна бандажа під час ремонту</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K22</td>
<td>Ослаблення бандажа (ослаблення дротового бандажа, хомута кріплення стійки до приставки прослизання, що викликало, або нахил стійки поверх норми)</td>
<td>Підтягування бандажа і поставка опори</td>
<td>» »</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K23</td>
<td>Корозія бандажа (поверхнева корозія бандажа, хомута, кріплення стійки до приставки)</td>
<td>Фарбування бандажа</td>
<td>Під час ТО</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>K24</td>
<td>Ослаблення кріплення підкоса</td>
<td>Підтягування кріплення підкоса</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K31</td>
<td>Перекіс траверси (відхилення траверси від горизонтального положення на кут понад 15°)</td>
<td>Постава траверси</td>
<td>Під час ремонту</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>K41*</td>
<td>Випадання гака (штиря)</td>
<td>Закріплення гака*</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K42</td>
<td>Ослаблення гака (штиря)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>K51*</td>
<td>Зрив ізолятора</td>
<td>Установлення і закріплення ізолятора</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K61*</td>
<td>Обрив в'язання</td>
<td>Заміна в'язання*</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K71*</td>
<td>Пошкодження кріплення шлейфа (ослаблення, корозія, іскріння контакту в шлейфі)</td>
<td>Заміна шлейфа*</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Продовження таблиці Б.1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K81</td>
<td>Пошкодження кріплення муфти (ослаблення, пошкодження кріплення муфти кабельного переходу на опорі, відсутність муфти там, де вона повинна бути)</td>
<td>Заміна кріплення муфти</td>
<td>Під час ремонту</td>
<td>0,6</td>
</tr>
<tr>
<td>K91</td>
<td>Пошкодження відтягнення</td>
<td>Ремонт, заміна відтягнення</td>
<td>Те саме</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Присвічки, стійки, підкіс

<table>
<thead>
<tr>
<th></th>
<th>Відсутність нумерації (відсутність умовних позначок, нумерації опор, попереджувальних плакатів на опорі)</th>
<th>Відновлення нумерації, плакатів*</th>
<th></th>
<th>0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Загнівання дерев'яної присвічки (зменшення її діаметра понад мінімально припустимий) або розтріскування залізобетонної присвічки (тріщини розкриттям 0,5 см і більше сумарною довжиною 1,5 м)</td>
<td>Заміна присвічки</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>C21</td>
<td>Оголення арматури присвічки (відкол захисного шару бетону з оголенням стрижнів поздовжньої арматури понад 1,5 м)</td>
<td>Те саме</td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td>C24</td>
<td>Розтріскування бетону присвічки (тріщини в бетоні залізобетонної присвічки розкриттям 0,5 мм і більше сумарною довжиною понад 1,5 м)</td>
<td></td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td>C31</td>
<td>Загнівання дерев'яної стійки (зменшення її діаметра понад припустимий) або розтріскування залізобетонної стійки (тріщини 0,5 см і більше сумарною довжиною понад 1,5 м)</td>
<td>Заміна дерев'яної стійки</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>C33</td>
<td>Оголення арматури стійки (відкол захисного шару з оголенням стрижнів поздовжньої арматури понад 1,5 м)</td>
<td>Заміна стійки</td>
<td></td>
<td>0,6</td>
</tr>
</tbody>
</table>
Продовження таблиці В.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C34</td>
<td>Розтріскунання бетону стійки (тріщини розкриттям 0,5 мм і більше сумарною довжиною понад 1,5 м)</td>
<td>Заміна стійки</td>
<td>Під час ремонту</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>Прогин стійки (вигин залізобетонної стійки, що викикав відхилення вершини від вертикала понад 0,5 м)</td>
<td>Те саме</td>
<td>Те саме</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>Загнивання підкоса (загнивання дерев'яного підкоса, при якому діаметр частини, що залишилася, менше припустимого); тріщини в підкосі розкриттям 0,5 см і більше сумарною довжиною понад 1,5 м</td>
<td>Заміна підкоса</td>
<td>""</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>Оголення арматури підкоса (відкол захисного шару бетону з оголенням стрижнів поздовжньої арматури довжиною понад 1,5 м)</td>
<td>Те саме</td>
<td>""</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>Розтріскунання бетону підкоса (тріщини в бетоні залізобетонного підкоса розкриттям 0,5 см і більше сумарною довжиною понад 1,5 м)</td>
<td>Заміна підкоса</td>
<td>""</td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>

Траверса, гак, ізолятор

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I11</td>
<td>Загнивання траверси (зменшення поперечного перерізу дерев'яної траверси більш ніж на 30%); тріщини в траверсі 1 см і більше сумарною довжиною понад 0,5 м</td>
<td>Заміна траверси</td>
<td>""</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>I12</td>
<td>Корозія траверси (наскрізне іржавіння металевої траверси, видиме з землі)</td>
<td>Те саме</td>
<td>""</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>I13*</td>
<td>Руйнування траверси</td>
<td>""</td>
<td>""</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>I14</td>
<td>Прогин траверси (вигин металевої траверси, видимий із землі)</td>
<td>""</td>
<td>""</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>I21</td>
<td>Вигин гака, штиря (деформація гака, штиря, видима з землі)</td>
<td>Заміна гака, штиря</td>
<td>""</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I22*</td>
<td>Злам гака, штира</td>
<td>Те саме*</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>I33*</td>
<td>Руйнування ізолятора</td>
<td>Заміна ізолятора*</td>
<td></td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Провід, кабельна вставка, відгалуження від ПЛ до введення в будинок

<p>| П11* | Накид (наявність на проводі ПЛ дроту, мотузки) | Видалення накиду* | | 0,4 | |
| П12 | Обрив дроту (обрив одного дроту верхнього повиву, видимий із землі) | Накладення бандажа | Під час ремонту | | 0,4 |
| П13 | Обрив дротів (обрив двох дротів верхнього повива і більш, спучування верхнього повива на проводі) | Вирізування дефектної ділянки й установлення ремонтної вставки | Те саме | | 0,7 |
| П14 | З'єднання проводу скруткою | Установлення з'єднувача | | 0,8 | |
| П21 | Провисання проводу на перетині (відстані по вертикалі від проводу до пересічних об'єктів нижче значення, регламентованого ПУЕ) | Перетягування проводу | | 1,0 | |
| П22 | Провисання приводу над землею (зменшення відстані по вертикалі від проводу до землі нижче припустимого значення) | Те саме | | 0,8 | |
| П36* | Пошкодження муфти (пошкодження корпусу муфти, текти кабельної маси тощо) | Заміна муфти* | | 0,8 | |
| П37 | Відсутність захисту кабелю (металеві куточки, що захищають кабель на опорі від механічних пошкоджень, пошкоджені) | Установлення куточків | Під час ТО | | 0,1 |
| П41 | Корозія проводу (суцільна корозія поверхні проводу, що викликала зменшення діаметра проводу на 10 % і більше) | Заміна проводу | Під час ремонту | 0,7 |
| П42 | Розтягування проводу (зменшення діаметра проводу на 10 % і більше) | Те саме | Те саме | 0,7 |
| П43 | Непроектний провід (перетин або марка не відповідають проекту ПЛ або вимогам ПУЕ) | » » | » » | 0,2 |
| П51 | Дефект шлейфа (обрив дротів шлейфа, корозія шлейфа, недостатня або завищена довжина шлейфа) | » » | » » | 0,5 |
| П52 | Пошкодження ізоляційного покриття СУП або арматури, що не викликає перекриття ізоляції | Відновлення ізоляційного покриття | » » | 0,5 |
| П53* | Пошкодження ізоляційного покриття СУП або арматури, що викликає перекриття ізоляції | Те саме* | | 0,1 |
| П54* | Пошкодження анкерного або відгалужувального затиску | Заміна затиску* | | 0,1 |
| П61 | Дефект відгалуження (пошкодження проводу, контактую, неприпустиме провисання відгалуження від ПЛ до введення в будинок) | Заміна відгалуження | » » | 0,4 |
| П62 | Непроектне відгалуження (відгалуження, виконане проводом, що не відповідає проекту ПЛ або вимогам ПУЕ) | Те саме | » » | 0,2 |
| Заземлювальний пристрій | | | | |
| У11 | Обрив заземлювального пристрою | Заміна спуску | » » | 0,1 |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>U21</td>
<td>Опір заземлення вище норми</td>
<td>Монтаж додаткового заземлення</td>
<td>Під час ремонту</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>U22</td>
<td>Відсутність заземлення (відсутність заземлення гаків і штирів, передбачена НД)</td>
<td>Прістрої заземлення</td>
<td>Те саме</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>U23</td>
<td>Відсутність повторного заземлення нульового проводу</td>
<td>Прістрій повторного заземлення</td>
<td>Під час ТО</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>U31</td>
<td>Руйнування заземлювального контуру</td>
<td>Заміна заземлювального контуру, що руйнує</td>
<td>Те саме</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Розділники, вуличне освітлення

| | A41 | Перекіс розділника (розрегулювання розділника, видиме з землі) | Регулювання розділника | "" | 0,3 |
| A42* | Руйнування розділника | Заміна розділника* | 0,7 |

* Робота повинна виконуватися негайно.
Додаток Г
до п.5.2 нормативного документа
«Методичні вказівки з обліку та аналізу
в енергосистемах технічного стану роз-
подільних електричних мереж напругою
0,38—20 кВ з повітряними лініями
електропередачі»
(рекомендований)

Порядок ведення листків огляду (перевірки)
і журналів дефектів об’єктів

Г.1 Листки огляду (перевірки) об’єктів видаються керів-
ником або спеціалістом РЕМ (EM) особі, що проводить ог-
ляд (перевірку).

Г.2 Керівником і спеціалістом РЕМ (EM) при видачі лист-
ка огляду (перевірки) об’єкта необхідно:
- установити обсяг огляду (перевірки) об’єкта;
- перевірити кваліфікацію особи, що проводить огляд
(перевірку), наявність і справність відповідних інструментів
і обладнання;
- ознайомити особу, що робить огляд (перевірку) об’єк-
та, з переліком характерних дефектів об’єктів;
- зробити інструктаж за правилами техніки безпеки, що
підлягають дотриманню при виконанні даного виду огляду
(перевірки) конкретного об’єкта.

Г.3 Листок огляду (перевірки) об’єкта являє собою бланк,
у якому вказуються дані про зареєстровані дефекти об’єкта.
Бланки листків огляду (перевірки) для кожного з трьох видів
об’єктів — ПЛ 6—20 кВ, ТП 6—20/0,38 кВ і ПЛ—0,38 кВ — пред-
ставлено в додатку Д.

Г.4 Один листок огляду (перевірки) рекомендується скла-
дати на:
- ПЛ напругою 6—20 кВ;
- ТП напругою 6—20/0,38 кВ;
- ПЛ напругою 0,38 кВ.
Г.5 При реєстрації дефектів елементів опори вказується номер опори, на якій виявлено дефект, і найменування дефекту. Запис з кожного вияленого дефекту заноситься в окремий рядок листка огляду (перевірки). При реєстрації дефектів на об’єкті, наприклад, на трасі або проводі, вказуються номер найближчої опори проміжного прольоту, на якому виявлений даний дефект, і найменування дефекту, наприклад, «54/ Відсутність нумерації».

При реєстрації на об’єкті великої кількості дефектів одного виду допускається зазначати в одному рядку листка огляду (перевірки) номери опор, що обмежують ділянку ПЛ із даним дефектом, і найменування дефекту (наприклад, «12—24/Провисання проводу над землею»). Такий спосіб запису допускається за умови дотримання порядкової нумерації опор на ділянці ПЛ із даним дефектом. При порушенні порядкової нумерації опор на ділянці дефект реєструється в додатковому рядку.

При виявленні декількох дефектів на елементах однієї опори або в одному проміжному прольоті кожен дефект реєструється в окремому рядку листка огляду (перевірки).

Г.6 При виявлени дефекту елементу об’єкта, що створює безпосередню загрозу безпеці населення, обслуговуючому персоналу (у додатках А—В такі дефекти відзначені «зірочкою»), у листку огляду (перевірки) він повинен бути відзначений такою ж «зірочкою».

Особа, що приймає листок огляду (перевірки), зобов’язана повідомити керівництво ЕМ про наявність зареєстрованих дефектів такого роду для ухвалення рішення про їх негайне усунення.

Г.7 Заповнення «Журналу дефектів ПЛ напругою 6—20 кВ», «Журналу дефектів ТП напругою 6—20/0,38 кВ» і «Журналу дефектів ПЛ напругою 0,38 кВ» здійснюється протягом усього терміну експлуатації об’єкта. У журнал дефектів об’єкта заносяться результати всіх оглядів (перевірок), проведених на об’єкті.

Г.8 Окремий «Журнал дефектів ПЛ напругою 6—20 кВ» оформляється на кожну ПЛ 6—20 кВ, окремі журнали — «Жур-
нал дефектів ТП напругою 6—20 / 0,38 кВ і «Журнал дефектів напругою ПЛ 0,38 кВ» оформляються на всі ТП напругою 6—20/0, 38 кВ і ПЛ напругою 0,38 кВ одного населеного пункту (форми журналів дефектів, що рекомендуються, наведено в додатку Д).

Г.9 У «Журналі дефектів ТП напругою 6—20/0,38 кВ» і «Журналі дефектів ПЛ напругою 0,38 кВ» на кожну ТП напругою 6—20/0,38 кВ даного населеного пункту заздалегідь по-винно приділятися не менше 10 сторінок.

Г.10 У журналі дефектів графи «Номер опори, на якій виявлений дефект» і «Дата проведення (план), підпис» заповнюються керівництвом ЕМ, графа «Дата проведення (факт), підпис» заповнюється керівниками і спеціалістами ЕМ. Інші графи журналів дефектів заповнюються особою, що приймає листок огляду (перевірки).
Додаток Д
до п.5.2 нормативного документа
«Методичні вказівки з обліку
та аналізу в енергосистемах техніч-
ного стану розподільних електричних
мереж напругою 0,38—20 кВ
з повітряними лініями
електропередачі»
(рекомендований)

Бланки листків огляду (перевірки)
i форми журналів дефектів об'єктів

Листок огляду (перевірки) ПЛ напругою 6—20 кВ

ЕМ __________________________
Підстанція ____________________
Ділянка майстра ______
Напруга ________________ кВ
ПЛ № ____________________
Вид огляду (перевірки) __________________________

Дата огляду (перевірки) __________________________

<table>
<thead>
<tr>
<th>Номер опори, на якій виявлено дефект</th>
<th>Найменування дефекту</th>
<th>Примітка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Огляд (перевірку) зробив: __________________________
Посада __________________________
Підпис __________________________
Дата __________________________

Листок огляду (перевірки) ТП напругою 6—20/0,38 кВ

ЕМ __________________________
Ділянка майстра ____________
Населений пункт ____________
Вид огляду (перевірки) __________________________
СОУН МПЕ 40.1.20.576:2005
Дата огляду (перевірки)

<table>
<thead>
<tr>
<th>Номер ТП 6-20 / 0,38 кВ</th>
<th>Найменування дефекту</th>
<th>Примітка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Огляд (перевірку) зробив: Листок огляду (перевірки) прийняв:
Посада _____________ Посада __________________
Підпис ______________ Підпис __________________
Дата _______________ Дата ____________________

Листок огляду (перевірки) ПЛ напругою 0,38 кВ

ЕМ ________________ Ділянка майстра __________
Населений пункт ______________________________________

Вид огляду (перевірки)

Дата огляду (перевірки)

<table>
<thead>
<tr>
<th>Номер ТП 6—20/0,38 кВ</th>
<th>Номер ПЛ 0,38 кВ</th>
<th>Номер опори, на якій виявлений дефект</th>
<th>Найменування дефекту</th>
<th>Примітка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Огляд (перевірку) зробив: Листок огляду (перевірки) прийняв:
Посада ________________ Посада __________________
Підпис ________________ Підпис __________________
Дата ________________ Дата ____________________

62
Журнал дефектів ПЛ 6—20 кВ

<table>
<thead>
<tr>
<th>Вид огляду (перевірки)</th>
<th>Номер опори, на якій виявлено дефект</th>
<th>Найменування дефекту</th>
<th>Найменування роботи з усунення дефекту</th>
<th>Дата проведення (план), підпис</th>
<th>Дата проведення (факт), підпис</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Журнал дефектів ТП напругою 6—20/0,38 кВ

<table>
<thead>
<tr>
<th>Вид огляду (перевірки)</th>
<th>Найменування дефекту</th>
<th>Найменування роботи з усунення дефекту</th>
<th>Дата проведення (план), підпис</th>
<th>Дата проведення (факт), підпис</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ТП №</th>
</tr>
</thead>
</table>
Журнал дефектів ПЛ напругою 0,38 кВ

<table>
<thead>
<tr>
<th>Вид огляду (перевірки)</th>
<th>Номер опори, на якій виявлений дефект</th>
<th>Найменування дефекту</th>
<th>Дата проведення (план), підпис</th>
<th>Дата проведення (факт), підпис</th>
</tr>
</thead>
</table>

ТП № __________________
Додаток Е
до п.5.3 нормативного документа
«Методичні вказівки з обліку
та аналізу в енергосистемах техніч-
ного стану розподільних електричних
мереж напругою 0,38—20 кВ з повітряни-
ми лініями електропередачі»
(обов’язковий)

Форма заздалегідь відомості показників технічного стану
розподільних електричних мереж
напругою 0,38—20 кВ
за станом на 31.12. ______ р.

Підрозділ енергопостачальної компанії/підприємства

Енергопостачальна компанія/підприємство

1. Кількість дефектних елементів, що знаходяться
в експлуатації за станом на 31 грудня звітного року

<table>
<thead>
<tr>
<th>Найменування елемента</th>
<th>ПЛ 6—20 кВ і ТП 6—20/0,38 кВ</th>
<th>ПЛ 0,38 кВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Приставки дерев'яні*, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Стояки дерев'яні**, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Приставки залізобетонні, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Опори залізобетонні, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ізолятори***, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Провід неізольований****, провід · км</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Трансформатори 1-го і 2-го габаритів з терміном служби понад 25 років, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Автоматичні вимикачі 0,38 кВ, шт.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* У тому числі дефектні підставки цільностоюкових дерев'яних опор.
** У тому числі дефектні стійки цільностоюкових дерев'яних опор.
*** У тому числі ізолятори 6—20 кВ, які підлягають заміні на ізолятори ШФ10М, ШС10М, ШФ20.
**** У тому числі всі сталеві проводи, алюмінієві проводи перетином 35 мм² і нижче на ПЛ 6—20 кВ, алюмінієві перетином 16 мм² на магістралах ПЛ 0,38 кВ.
2. Середня комплексна якісна оцінка технічного стану об'єктів

<table>
<thead>
<tr>
<th>Найменування об'єкта</th>
<th>Всього</th>
<th>Оцінка технічного стану об'єктів</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Добрий</td>
</tr>
<tr>
<td>ПЛ 6—20 кВ, км</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ТП 6—20/0,38 кВ, шт.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПЛ 0,38 кВ, км</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Додаток Ж
до п.5.3 нормативного документа
«Методичні вказівки з обліку та аналізу
в енергосистемах технічного стану роз-
подільних електричних мереж напругою
0,38—20 кВ з повітряними лініями
електропередачі»
(рекомендований)

Облік і аналіз відключень у розподільних електричних
мережах напругою 6—20 кВ

Основна частина обліку й аналізу відключень — інформа-
ційне забезпечення енергопостачальних компаній/організацій
для виконання розрахунків техніко-економічних показників
(визначення фактичних значень показників надійності, розра-
хунок потреби підрозділів електромереж у трудових, матері-
альних і фінансових ресурсах для виробництва ремонтно-ек-
сплуатаційних робіт, планування заходів щодо підвищення
надійності електричних мереж тощо).

Первинний облік відключень ведеться в оперативній до-
кументації РЕМ (ДЕМ). Обсяг інформації, що рекомендуєть-
ся (з кожного відключення), переданої по телефону в ЕМ для
проведення аналізу, викладений нижче.

Не рекомендується передавати з ЕМ в НЕК «Укренерго»
по телефону інформацію про кожне відключення в електрич-
них мережах напругою 6—20 кВ.

Ж.1 Облік відключень у розподільних електричних
мережах напругою 6—20 кВ

Рекомендується вести облік усіх видів відключень, як
раптових (аварійних, здійснюваних пристроями релейного
захисту й автоматики), так і навмисних (здійснюваних опе-
ративним або ремонтним персоналом).

Ж.2 Облік раптових (аварійних) відключень

Рекомендується реєструвати відключення таких об’єктів:
ПЛ напругою 6—20 кВ (відключення комутаційних апаратів у лінійному осередку ПС—35 кВ і вище);
- ділянок ПЛ напругою 6—20 кВ (відключення секціонуючих апаратів на ПЛ, керованих автоматично);
- ТП напругою 6—20/0,38 кВ і РП напругою 6—20 кВ (спрацьовування запобіжників 6—20 кВ або відключення комутаційних апаратів на ТП і РП, керованих автоматично).
При відключенні ПЛ рекомендується реєструвати наступну інформацію:
- найменування РЕМ;
- найменування ПС—35 кВ і вище;
- найменування ПЛ;
- рік, місяць, день, година і хвилини відключення;
- рік, місяць, день, година і хвилини включення;
- найменування виду відключення (класифікатор видів відключення наведено в таблиці Ж.1);
- кількість відключених ТП, шт;
- сумарну встановлену потужність відключених ТП, кВ·А;
- розрахункова недовідпуску електроенергії, кВт·год;
- найменування причини відключення (класифікатор причин відключення наведено в таблиці Ж.2);
- роботу пристроїв телесигналізації на ДП РЕМ;
- найменування виду пошкодженого елемента (класифікатор видів елементів наведено в таблиці Ж.3);
- кількість пошкоджених елементів даного виду, шт;
- вартість ремонту, грн.
При відключенні ділянок ПЛ рекомендується реєструвати інформацію, передбачену вище, і додатково диспетчерський номер комутаційного апарату, що відключили дану ділянку.
При відключенні ТП або РП рекомендується реєструвати інформацію, передбачену вище (вказується диспетчерське найменування ПЛ 6—20 кВ, до якої підключено дану ТП або РП при нормальній схемі електропостачання), і додатково диспетчерський номер комутаційного апарату, що відключив дану ТП (РП).
Ж.З Облік навмисних відключень

Рекомендується реєструвати відключення об’єктів. При відключенні ПЛ рекомендується реєструвати таку інформацію:
- найменування РЕМ, ПС і ПЛ;
- рік, місяць, день, година і хвилини відключення;
- рік, місяць, день, година і хвилини включення;
- найменування виду відключення;
- кількість відключених ТП, шт.
- сумарна встановлена потужність відключених ТП, кВ·А;
- розрахунковий недовідпуск електроенергії, кВт·год.

При відключенні ділянок ПЛ рекомендується реєструвати перераховану вище інформацію і додатково диспетчерський номер комутаційного апарату, яким відключено дану ділянку.

При відключенні ТП або РП рекомендується реєструвати диспетчерське найменування ПЛ, до якої підключено дану ТП або РП при нормальній схемі електропостачання, і додатково диспетчерський номер комутаційного апарату, яким відключено дану ТП (РП).

При відключенні виробничих сільськогосподарських споживачів рекомендується реєструвати таку інформацію:
- найменування РЕМ, ПС, ПЛ (до яких підключений даний споживач при нормальній схемі електропостачання);
- рік, місяць, день, година і хвилини відключення;
- рік, місяць, день, година і хвилини включення;
- найменування господарства (абонента), населеного пункту і споживача.

Ж.4 Облік відключень у розподільних електричних мережах напругою 0,38 кВ

Рекомендується вести облік всіх видів відключень, як раптових (здійснюваних лінійними запобіжниками або автоматичними вимикачами на ТП), так і навмисних (здійснюваних оперативним або ремонтним персоналом).
Ж.5 Облік раптових відключень ПЛ

Рекомендується реєструвати таку інформацію при відключенні ПЛ:
- найменування РЕМ;
- найменування споживача (абонента);
- найменування населеного пункту;
- диспетчерський номер ТП і ПЛ;
- рік, місяць, день, година і хвилини надходження інформації про відключення на ДП РЕМ;
- рік, місяць, день, година і хвилини включення;
- найменування виду відключення (див. таблицю Ж.1);
- найменування причини відключення (див. таблицю Ж.2);
- найменування виду пошкодженого елемента (див. таблицю Ж.3);
- кількість пошкоджених елементів даного виду, шт.;
- вартість ремонту, грн.

Ж.6 Облік навмисних відключень ПЛ

Рекомендується реєструвати таку інформацію при відключенні ПЛ:
- найменування РЕМ, споживача (абонента), населеного пункту, диспетчерський номер ТП і ПЛ;
- рік, місяць, день, години і хвилини відключення;
- рік, місяць, день, години і хвилини включення;
- найменування виду відключення.

Ж.7 Аналіз відключень у розподільних електричних мережах напругою 6—20 кВ

Аналіз відключень рекомендується робити не рідше одного разу в три місяці по наростаючому підсумку в службах розподільних мереж ЕМ і енергосистем.

Ж.8 Служба розподільних мереж ЕМ

Об’єктом аналізу є кожна ПЛ і кожна РЕМ.

По кожній ПЛ рекомендується такі стандартні форми аналізу (приклад наведено в таблицях Ж.4 і Ж.5):
Таблиця Ж.1 — Класифікатор видів відключень

<table>
<thead>
<tr>
<th>Код</th>
<th>Вид відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Раптове з неуспішним ручним повторним включенням (РПВ)</td>
</tr>
<tr>
<td>11</td>
<td>Раптове з успішним РПВ</td>
</tr>
<tr>
<td>12</td>
<td>Раптове з успішним АПВ</td>
</tr>
<tr>
<td>19</td>
<td>Інші раптові відключення</td>
</tr>
<tr>
<td>20</td>
<td>Навмисне для проведення капітального ремонту</td>
</tr>
<tr>
<td>21</td>
<td>Навмисне за заявками СМЗ</td>
</tr>
<tr>
<td>22</td>
<td>Навмисне за заявками споживачів</td>
</tr>
<tr>
<td>23</td>
<td>Навмисне для усунення замикання на землю</td>
</tr>
<tr>
<td>29</td>
<td>Інші навмисні відключення</td>
</tr>
</tbody>
</table>

Таблиця — Ж.2 Класифікатор причин відключень

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Недоліки експлуатації

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>Відключення роз’єднувача під навантаженням, включення на коротку</td>
</tr>
<tr>
<td>020</td>
<td>Інші помилкові дії персоналу</td>
</tr>
<tr>
<td>040</td>
<td>Порушення термінів і обсягів ремонтів або профілактичних іспитів</td>
</tr>
<tr>
<td>050</td>
<td>Невиконання директивних вказівок з усунення аварійних вогнищ, експлуатація дефектного устаткування</td>
</tr>
<tr>
<td>060</td>
<td>Неприпустиме перевантаження</td>
</tr>
<tr>
<td>090</td>
<td>Інші</td>
</tr>
</tbody>
</table>

Сложивчі відключення

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Пошкодження устаткування абонента</td>
</tr>
</tbody>
</table>

Дефекти ремонту

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Дефекти зварювання, пайки, обпресування</td>
</tr>
<tr>
<td>220</td>
<td>Вилучення сторонніх предметів</td>
</tr>
<tr>
<td>230</td>
<td>Усунення деталей і вузлів з матеріалу, що не відповідає проекту об’єкта, або низької якості</td>
</tr>
<tr>
<td>280</td>
<td>Порушення технології ремонту</td>
</tr>
<tr>
<td>290</td>
<td>Інші дефекти ремонту</td>
</tr>
</tbody>
</table>

Дефекти монтажу, транспортування і збереження

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Порушення правил транспортування і збереження</td>
</tr>
</tbody>
</table>
Продовження таблиці Ж.2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>Застосування конструкцій матеріалів, що не відповідають проекту об'єкту</td>
</tr>
<tr>
<td>340</td>
<td>Дефекти закладення в грунті й установлення на фундаменті</td>
</tr>
<tr>
<td>350</td>
<td>Недотримання проектних розробок</td>
</tr>
<tr>
<td>360</td>
<td>Вилучення сторонніх предметів</td>
</tr>
<tr>
<td>370</td>
<td>Механічні пошкодження</td>
</tr>
<tr>
<td>390</td>
<td>Інші дефекти монтажу</td>
</tr>
<tr>
<td>Недоліки проектування</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Неправильний вибір розрахункових умов роботи устаткування в умовах експлуатації</td>
</tr>
<tr>
<td>420</td>
<td>Неправильний вибір типів або параметрів устаткування</td>
</tr>
<tr>
<td>430</td>
<td>Вибір устаткування, що не відповідає вимогам корозійної стійкості</td>
</tr>
<tr>
<td>440</td>
<td>Вибір устаткування, що не відповідає вимогам пожежної безпеки</td>
</tr>
<tr>
<td>450</td>
<td>Неправильний вибір габаритних розмірів</td>
</tr>
<tr>
<td>490</td>
<td>Інші</td>
</tr>
<tr>
<td>Дефекти конструкції і виготовлення</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>Дефекти заводського зварювання, армування</td>
</tr>
<tr>
<td>520</td>
<td>Порушення технології виготовлення</td>
</tr>
<tr>
<td>540</td>
<td>Застосування матеріалів, що не відповідають проекту об'єкта</td>
</tr>
<tr>
<td>550</td>
<td>Наявність місцевого дефекту (повітряного включення в ізоляцію тощо)</td>
</tr>
<tr>
<td>560</td>
<td>Дефекти конструкції</td>
</tr>
<tr>
<td>570</td>
<td>Відколи залізобетону, оголення арматури</td>
</tr>
<tr>
<td>590</td>
<td>Інші дефекти виготовлення</td>
</tr>
<tr>
<td>Зміна матеріалів у процесі експлуатації</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>Корозія</td>
</tr>
<tr>
<td>640</td>
<td>Старіння ізоляції</td>
</tr>
<tr>
<td>650</td>
<td>Загнивання деревини</td>
</tr>
<tr>
<td>690</td>
<td>Інші</td>
</tr>
<tr>
<td>Вплив кліматичних умов</td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>Атмосферні перенапруги (гроза)</td>
</tr>
<tr>
<td>720</td>
<td>Швидкість вітру вище розрахункової</td>
</tr>
<tr>
<td>730</td>
<td>Товщина ожеледі (мокрий сніг) вище розрахункової</td>
</tr>
</tbody>
</table>
Закінчення таблиці Ж.2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>740</td>
<td>Ожеледь зі швидкістю вітру вище розрахункової</td>
</tr>
<tr>
<td>750</td>
<td>Забруднення, засмічення, зволоження</td>
</tr>
<tr>
<td>760</td>
<td>Повінь, льодохід</td>
</tr>
<tr>
<td>770</td>
<td>Землетрус, селі, зсуви, обвали, осідання, спучування ґрунту</td>
</tr>
<tr>
<td>780</td>
<td>Температурні атмосферні впливи</td>
</tr>
<tr>
<td>790</td>
<td>Інші</td>
</tr>
</tbody>
</table>

Нерозрахункові режими

<table>
<thead>
<tr>
<th>810</th>
<th>Комутаційні перенапруги</th>
</tr>
</thead>
<tbody>
<tr>
<td>830</td>
<td>Підвищена вібрація ПЛ, механічні коливання проводів ПЛ</td>
</tr>
<tr>
<td>840</td>
<td>«Пляска» проводів ПЛ</td>
</tr>
<tr>
<td>850</td>
<td>Струми перевантаження або КЗ</td>
</tr>
<tr>
<td>890</td>
<td>Інші</td>
</tr>
</tbody>
</table>

Сторонні впливи

<table>
<thead>
<tr>
<th>910</th>
<th>Перекриття птахами і тваринами</th>
</tr>
</thead>
<tbody>
<tr>
<td>920</td>
<td>Наїзд транспорту і високогабаритних машин</td>
</tr>
<tr>
<td>930</td>
<td>Накид, бій ізоляторів, простріл демонтаж елементів</td>
</tr>
<tr>
<td>940</td>
<td>Пожежа на об’єкті</td>
</tr>
<tr>
<td>950</td>
<td>Падіння дерев, наближення дерев до траси ПЛ</td>
</tr>
<tr>
<td>990</td>
<td>Інші</td>
</tr>
<tr>
<td>991</td>
<td>Причина не з’ясована</td>
</tr>
</tbody>
</table>

Таблиця Ж.3 — Класифікатор видів елементів

<table>
<thead>
<tr>
<th>Код</th>
<th>Причина відключення</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Пошкоджені елементи відсутні</td>
</tr>
</tbody>
</table>

Елементи опор

<table>
<thead>
<tr>
<th>101</th>
<th>Кріплення в ґрунті дерев’яної приставки</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>Кріплення в ґрунті залізобетонної приставки</td>
</tr>
<tr>
<td>109</td>
<td>Кріплення в ґрунті інших приставок</td>
</tr>
<tr>
<td>111</td>
<td>Кріплення в ґрунті дерев’яної опори без приставки</td>
</tr>
</tbody>
</table>
Продовження таблиці Ж.3

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>Кріплення в ґрунті залізобетонної опори</td>
</tr>
<tr>
<td>119</td>
<td>Кріплення в ґрунті інших опор</td>
</tr>
<tr>
<td>121</td>
<td>Дерев'яна приставка</td>
</tr>
<tr>
<td>122</td>
<td>Залізобетонна приставка</td>
</tr>
<tr>
<td>129</td>
<td>Інші приставки</td>
</tr>
<tr>
<td>130</td>
<td>Кріплення стійки до приставки (бандах, хомут)</td>
</tr>
<tr>
<td>141</td>
<td>Дерев'яна опора без приставки</td>
</tr>
<tr>
<td>151</td>
<td>Дерев'яна стійка на дерев'яній приставці</td>
</tr>
<tr>
<td>161</td>
<td>Дерев'яна стійка на залізобетонній приставці</td>
</tr>
<tr>
<td>171</td>
<td>Залізобетонна опора</td>
</tr>
<tr>
<td>180</td>
<td>Інші стійки й опори</td>
</tr>
<tr>
<td>191</td>
<td>Траверса</td>
</tr>
<tr>
<td>199</td>
<td>Інші елементи опор</td>
</tr>
</tbody>
</table>

Ізолятори

201	ШФ10-Г
202	ШФ20-У
209	Інші порцелянові
211	ШС10-Г
219	Інші скляні
220	Невідомий

Кріплення проводів

<p>| 301 | Одинарне дротове в'язання |
| 302 | Подвійне дротове в'язання |
| 311 | Зажим ЗАДО-10 |
| 390 | Інші способи збереження |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Продовження таблиці Ж.3</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>Сталевий 16 мм</td>
</tr>
<tr>
<td>402</td>
<td>Сталевий 25 мм</td>
</tr>
<tr>
<td>403</td>
<td>Сталевий 35 мм</td>
</tr>
<tr>
<td>404</td>
<td>Сталевий невідомого перетину</td>
</tr>
<tr>
<td>411</td>
<td>Алюмінієвий 16 мм</td>
</tr>
<tr>
<td>412</td>
<td>Алюмінієвий 25 мм</td>
</tr>
<tr>
<td>413</td>
<td>Алюмінієвий 35 мм</td>
</tr>
<tr>
<td>414</td>
<td>Алюмінієвий 50 мм</td>
</tr>
<tr>
<td>415</td>
<td>Алюмінієвий 70 мм</td>
</tr>
<tr>
<td>416</td>
<td>Алюмінієвий 95 мм</td>
</tr>
<tr>
<td>417</td>
<td>Алюмінієвий 120 мм</td>
</tr>
<tr>
<td>418</td>
<td>Алюмінієвий невідомого перетину</td>
</tr>
<tr>
<td>421</td>
<td>Сталеалюмінієвий 16 мм</td>
</tr>
<tr>
<td>422</td>
<td>Сталеалюмінієвий 25 мм</td>
</tr>
<tr>
<td>423</td>
<td>Сталеалюмінієвий 35 мм</td>
</tr>
<tr>
<td>424</td>
<td>Сталеалюмінієвий 50 мм</td>
</tr>
<tr>
<td>425</td>
<td>Сталеалюмінієвий 75 мм</td>
</tr>
<tr>
<td>426</td>
<td>Сталеалюмінієвий 95 мм</td>
</tr>
<tr>
<td>427</td>
<td>Сталеалюмінієвий 120 мм</td>
</tr>
<tr>
<td>429</td>
<td>Сталеалюмінієвий невідомого перетину</td>
</tr>
<tr>
<td>451</td>
<td>Кабель АСБ-10/50</td>
</tr>
<tr>
<td>471</td>
<td>Кінцева муфта кабелю</td>
</tr>
<tr>
<td>472</td>
<td>Невідомий</td>
</tr>
</tbody>
</table>

Komutaciіні aparatи на ПЛ

| 501 | Роз'єднувач РЛНД — 10 |
Закінчення таблиці Ж.3

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>511</td>
<td>Масляний вимикач</td>
</tr>
<tr>
<td>512</td>
<td>Невідомий</td>
</tr>
</tbody>
</table>

Розрядники на ПЛ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Вентильний</td>
</tr>
<tr>
<td>611</td>
<td>Трубчастий</td>
</tr>
<tr>
<td>612</td>
<td>Невідомий</td>
</tr>
</tbody>
</table>

Устаткування ТП

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Виносний роз'єднувач</td>
</tr>
<tr>
<td>710</td>
<td>Шлейф спуску до ТП</td>
</tr>
<tr>
<td>720</td>
<td>Прохідний ізолятор</td>
</tr>
<tr>
<td>730</td>
<td>Розрядник</td>
</tr>
<tr>
<td>740</td>
<td>Запобіжник 10 кВ</td>
</tr>
<tr>
<td>750</td>
<td>Силовий трансформатор</td>
</tr>
<tr>
<td>760</td>
<td>Вступний АВ 0,4 кВ</td>
</tr>
<tr>
<td>770</td>
<td>Збірні шини 0,38 кВ</td>
</tr>
<tr>
<td>780</td>
<td>Головний АВ ПЛ 0,38 кВ</td>
</tr>
<tr>
<td>790</td>
<td>Інші елементи</td>
</tr>
<tr>
<td>791</td>
<td>Невідомо</td>
</tr>
</tbody>
</table>

Інші елементи ПЛ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>Показчик пошкодженої ділянки</td>
</tr>
</tbody>
</table>

- загальні зведення про всі види відключення ПЛ 6—20 кВ;
- аналіз наслідків раптових відключень ПЛ 6—20 кВ.

Основна мета даних форм — аналіз повторюваності відключень ПЛ з обчисленням фактичних значень показників надійності (кількості відключень на 100 км ПЛ, середньої тривалості одного відключення, середнього простою одного ТП при одному відключенні і середньому недовідпуску електроенергії при одному відключенні) по кожній ПЛ і в середньому по РЕМ.
У цілому по РЕМ рекомендується такі стандартні форми аналізу (приклад наведено в таблицях Ж.6—Ж.8):
- зведений аналіз усіх видів відключень ПЛ 6—20 кВ;
- зведений аналіз по групах причин раптових відключень ПЛ 6—20 кВ;
- зведений аналіз пошкоджень елементів ПЛ 6—20 кВ.

Ж.9 Служба розподільних мереж енергопостачальних компаній/організацій

Об’єктом аналізу є кожен РЕМ і ЕМ.
По кожному РЕМ рекомендується використовувати стандартні форми аналізу, наведено в таблицях Ж.4, Ж.5.
По кожній ЕМ у цілому рекомендується використовувати стандартні форми аналізу, наведено в таблицях Ж.6—Ж.8.

Ж.10 Аналіз відключень у мережах напругою 0,38 кВ

Аналіз відключень рекомендується робити не рідше одного разу в три місяці за наростаючим підсумком тільки в службах розподільних мереж ЕМ.

Об’єктом аналізу є кожен населений пункт і кожен РЕМ.
По кожному населеному пункту рекомендується така стандартна форма аналізу: загальні зведення про всі види відключень ПЛ 0,38 кВ (таблиця Ж.9).

Основна мета даної форми — аналіз повторюваності відключень ПЛ з обчисленням фактичних значень показників надійності (кількості відключень на 100 км ПЛ, середньої тривалості одного відключення) по кожному населеному пункті й у середньому по РЕМ.

У цілому по РЕМ рекомендується використовувати зведений аналіз усіх видів відключень ПЛ 0,38 кВ (таблиця Ж.10).

Ж.11 Передача інформації з ЕМ в енергопостачальну компанію/організацію

Інформацію, що рекомендується, про відключення передавати щомісяця за формую ПМ-31 (таблиці Ж.11—Ж.12). Даний класифікатор (код) може використовуватися в журналі реєстрації аварій і відмов (Розслідування і облік технологічних порушень на об’єктах електроенергетики і в Об’єднаній енергетичній системі України).
Ж. 12 Стандартні форми аналізу відключень по кожній ПЛ 6—20 кВ

РЕМ: Білозерський

Звітний період: із січня 200_ р.
по березень 200_ р.

Таблиця Ж.4 — Загальні зведення про усі види відключень

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування живлячої підстанції та ПЛ</th>
<th>Довжина по трасі, км</th>
<th>Кількість усіх видів відключень ПЛ</th>
<th>Кількість раптових відключень ПЛ</th>
<th>Кількість раптових відключень ПЛ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Усього</td>
<td>На 100 км ПЛ</td>
<td>Усього</td>
<td>На 100 км ПЛ</td>
</tr>
<tr>
<td>1</td>
<td>ПС «Тягінська» 35 /10 кВ, ПЛ №5</td>
<td>40</td>
<td>1</td>
<td>2,50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ПС «Олексіївка» 110 /10 кВ, ПС «Насосна»</td>
<td>5</td>
<td>2</td>
<td>40,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Загалом по РЕМ</td>
<td>222</td>
<td>3</td>
<td>1,4</td>
<td>2</td>
</tr>
</tbody>
</table>

Таблиця Ж.5 — Аналіз наслідків раптових відключень

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування живильної підстанції та ПЛ</th>
<th>Кількість відключених ТП, шт.</th>
<th>Установлена потужність відключених ТП, кВ.А</th>
<th>Продовжительність відключень, год, хв</th>
<th>Простій, кВ.А, год</th>
<th>Недовідпуск електро- енергії, кВт.год</th>
<th>Простій, кВ.А, год</th>
<th>Недовідпуск електро- енергії, кВт.год</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ПС «Тягінська» 35 /10 кВ, ПЛ №5</td>
<td>17</td>
<td>1700</td>
<td>3,50</td>
<td>6516</td>
<td>3102</td>
<td>3,50</td>
<td>6516</td>
</tr>
<tr>
<td>2</td>
<td>ПС «Олексіївка» 110 /10 кВ, ПС «Насосна»</td>
<td>6</td>
<td>1300</td>
<td>5,00</td>
<td>3600</td>
<td>1714</td>
<td>2,30</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>Загалом по РЕМ</td>
<td>23</td>
<td>300</td>
<td>8,50</td>
<td>10116</td>
<td>4816</td>
<td>2,57</td>
<td>3372</td>
</tr>
</tbody>
</table>
Ж. 13 Стандартні форми аналізу відключень ПЛ 6–20 кВ у цілому по REM

REM: Білозерський
Звітний період: із січня 200_ р.
по березень 200_ р.

Таблиця Ж.6 — Зведений аналіз усіх видів відключень

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування показника</th>
<th>Значення показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Абсолютна кількість відключень</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Відносна кількість відключень, відкл/100 км</td>
<td>1,35</td>
</tr>
<tr>
<td>3</td>
<td>Сумарна кількість відключень ТП 6–20/0,4 кВ, шт, шт.</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Сумарна встановлена потужність відключених ТП 6–20/0,4 кВ, кВ • А</td>
<td>3000</td>
</tr>
<tr>
<td>5</td>
<td>Сумарна тривалість відключень, год, хв.</td>
<td>8,50</td>
</tr>
<tr>
<td>6</td>
<td>Сумарний простій відключених ТП 6–20/0,4 кВ, кВ • А • год</td>
<td>10116</td>
</tr>
<tr>
<td>7</td>
<td>Сумарний недовідпуск електроенергії, кВт • год</td>
<td>4816</td>
</tr>
<tr>
<td>8</td>
<td>Середня кількість відключених ТП 6–20 / 0,4 кВ, шт/відкл</td>
<td>7,67</td>
</tr>
<tr>
<td>9</td>
<td>Середня встановлена потужність відключених ТП 6–20 / 0,4 кВ, кВ • А/відкл</td>
<td>1000,00</td>
</tr>
<tr>
<td>10</td>
<td>Середня тривалість відключення, год, хв/ відкл</td>
<td>2,57</td>
</tr>
<tr>
<td>11</td>
<td>Середній простій відключених ТП 6–20 кВ, кВ • А • го/ відкл</td>
<td>3372</td>
</tr>
<tr>
<td>12</td>
<td>Середній недовідпуск електроенергії, кВт • го/ відкл</td>
<td>1605</td>
</tr>
</tbody>
</table>

Таблиця Ж.7 — Зведений аналіз по групах причин раптових відключень

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування групи причин відключень</th>
<th>Абсолютна кількість відключень, одиниць</th>
<th>Відносна кількість відключень, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>Недоліки експлуатації</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>Дефекти ремонту</td>
<td>2</td>
<td>100,00</td>
</tr>
<tr>
<td>3</td>
<td>Дефекти монтажу, транспортування і збереження</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>Недоліки проектування</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>5</td>
<td>Дефекти конструкції і виготовлення</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Закінчення таблиці Ж.7

<table>
<thead>
<tr>
<th>№</th>
<th>Зміна матеріалів у процесі експлуатації</th>
<th>Вплив кліматичних умов</th>
<th>Нерозраховані режими</th>
<th>Сторонні впливи</th>
<th>Причину не з’ясовано</th>
<th>Пошкодження устаткування на балансі абонента</th>
<th>Разом</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

Таблиця Ж.8 — Зведений аналіз пошкоджень елементів

<table>
<thead>
<tr>
<th>№ пп</th>
<th>Найменування показника</th>
<th>Значення показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кількість пошкоджених елементів опор, шт</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Коефіцієнт пошкоджуваності елементів опор, проміле</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>Кількість пошкоджених ізоляторів, шт</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Коефіцієнт пошкоджуваності ізоляторів, проміле</td>
<td>0,00</td>
</tr>
<tr>
<td>5</td>
<td>Кількість пошкоджених кріплень проводів, шт</td>
<td>0,00</td>
</tr>
<tr>
<td>6</td>
<td>Коефіцієнт пошкоджуваності кріплень проводів, проміле</td>
<td>0,00</td>
</tr>
<tr>
<td>7</td>
<td>Кількість пошкоджень проводів і кабелів, одиниць</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Коефіцієнт пошкоджуваності проводів і кабелів, проміле/км</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>Кількість пошкоджених комутаційних апаратів на ПЛ, шт</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>Коефіцієнт пошкоджуваності комутаційних апаратів на ПЛ, проміле</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>Кількість пошкоджених розрядників на ПЛ, шт</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>Коефіцієнт пошкоджуваності розрядників на ПЛ., проміле</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>Кількість пошкодженого устаткування на ТП, шт</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>Коефіцієнт пошкоджуваності устаткування на ТП, проміле / ТП</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>Кількість інших пошкоджених елементів ПЛ, шт</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>Коефіцієнт пошкоджуваності інших елементів ПЛ, проміле / опора</td>
<td>—</td>
</tr>
</tbody>
</table>
Таблиця Ж.9 — Стандартна форма аналізу усіх видів відключень ПЛ 0,38 кВ по кожному населеному пункту

PEM: Білозерський

Звітний період: із січня 200_ р.

по березень 200_ р.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування населеного пункту</th>
<th>Довжина ПЛ по трасі, км</th>
<th>Кількість усіх видів відключень ПЛ</th>
<th>Кількість раптових відключень ПЛ</th>
<th>Кількість навмисних відключень ПЛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>с.Аніве</td>
<td>18</td>
<td>16,67</td>
<td>3</td>
<td>16,67</td>
</tr>
<tr>
<td>2</td>
<td>с.Кратове</td>
<td>6</td>
<td>66,67</td>
<td>3</td>
<td>50,00</td>
</tr>
<tr>
<td>3</td>
<td>с.Яблукове</td>
<td>4</td>
<td>25,00</td>
<td>1</td>
<td>25,00</td>
</tr>
<tr>
<td>4</td>
<td>с.Кускове</td>
<td>7</td>
<td>14,29</td>
<td>1</td>
<td>14,29</td>
</tr>
<tr>
<td>5</td>
<td>с.Приволжськ</td>
<td>12</td>
<td>58,34</td>
<td>5</td>
<td>41,67</td>
</tr>
<tr>
<td>6</td>
<td>с.Армійське</td>
<td>5</td>
<td>60,00</td>
<td>0</td>
<td>00,00</td>
</tr>
<tr>
<td>7</td>
<td>с.Бритове</td>
<td>9</td>
<td>22,00</td>
<td>2</td>
<td>22,00</td>
</tr>
<tr>
<td>8</td>
<td>с.Кас'янове</td>
<td>4</td>
<td>50,00</td>
<td>1</td>
<td>25,00</td>
</tr>
<tr>
<td></td>
<td>Разом по PEM</td>
<td>384</td>
<td>5,99</td>
<td>16</td>
<td>4,17</td>
</tr>
</tbody>
</table>

Таблиця Ж.10 — Стандартна форма аналізу усіх видів відключень ПЛ 0,38 кВ в цілому по PEM

PEM: Білозерський

Звітний період: із січня 200_ р.

по березень 200_ р.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування показника</th>
<th>Значення показника</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Абсолютна кількість відключень</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Відносна кількість відключень, відкл/100 км</td>
<td>11,84</td>
</tr>
<tr>
<td>3</td>
<td>Сумарна тривалість відключень, год, хв</td>
<td>143,30</td>
</tr>
<tr>
<td>4</td>
<td>Сумарний недовідпуск електроенергії, кВт·год</td>
<td>348</td>
</tr>
<tr>
<td>5</td>
<td>Середня тривалість відключення, год, хв/відкл</td>
<td>6,14</td>
</tr>
<tr>
<td>6</td>
<td>Середній недовідпуск електроенергії, кВт·год/відкл</td>
<td>15,1</td>
</tr>
</tbody>
</table>
Ж.14 — Зведення про відключення в електричних мережах напругою 6—20 кВ

Форма ПМ-31

ЕМ: Східні електромережі
Звітний період: січень 200_р.

Таблиця Ж.11 — Раптові відключення

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Найменування РЕМ</th>
<th>ПЛ</th>
<th>діянок ПЛ</th>
<th>ТП</th>
<th>відповідальних споживачів</th>
<th>з неї людської причини</th>
<th>Сумарна тривалість усіх відключення, год.хв</th>
<th>Недовідпуск електроенергії, тис кВт·год</th>
<th>Кількість пошкоджених елементів</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Даниловський</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.20, 0.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Лазовський</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>9.00, 3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Білопольський</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17.54, 12.8</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Томілинський</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>46.06, 18.1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Биковський</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.33, 0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Лобинський</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29.33, 12.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Балабановський</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.00, 4.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Разом</td>
<td></td>
<td>23</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>110.26, 51.6</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблиця Ж.12 — Навмисні відключення

<table>
<thead>
<tr>
<th>№ пп</th>
<th>Найменування РЕМ</th>
<th>ПЛ</th>
<th>діянок ПЛ</th>
<th>ТП</th>
<th>відповідальних споживачів</th>
<th>вимушених відключень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Даниловський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Лазовський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Білопольський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Томілинський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Биковський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Лобинський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Балабановський</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Разом</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Додаток І
до розділів 5, 6, 7 нормативного документа «Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних електричних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі»
(рекомендований)

Приклад визначення граничних значень коефіцієнта заміни Ґ3 гр

При експлуатаційному обслуговуванні об’єкта (лінії, ТП тощо) в деяких випадках можна виробити стратегію подальшого його обслуговування за допомогою порівняння витрат по двох варіантах:

Варіант 1. На існуючому об’єкті в рік експлуатації t_p здійснюється капітальний ремонт (реконструкція). Після капітального ремонту (реконструкції) об’єкт експлуатується до кінця терміну служби $T_{сл}$, після чого вибуває з експлуатації.

Варіант 2. Той же об’єкт у рік t_p демонтується і замість нього споруджується новий з параметрами, аналогічними параметрам об’єкта за варіантом 1 після капітального ремонту (реконструкції).

У результаті порівняння варіантів визначається граничне значення коефіцієнта заміни Ґ3 при якому витрати на капітальний ремонт (реконструкцію) об’єкта стають рівними витратам на нове будівництво об’єкта. Порівнявши фактичне значення частки об’єкта, що підлягає заміні під час ремонту Ґ3ф із граничним значенням Ґ3гр, можна прийняти рішення про вибір варіантів стратегій обслуговування об’єкта: при Ґ3ф > Ґ3гр доцільне будівництво нового об’єкта, при Ґ3ф < Ґ3гр — капітальний ремонт (реконструкція) об’єкта.

Граничне значення коефіцієнта частки об’єкта, що підлягає заміні при ремонту Ґ3гр, при якому доцільне проведення капітального ремонту (реконструкції), визначається з виразу:
де k_n — коефіцієнт перевищення вартості нового об’єкта по відношенню до існуючого об’єкта;

ρ_a — норма амортизаційних відрахувань на реновацію;

k_n — коефіцієнт використання устаткування і матеріалів, демонтуваних при капітальному ремонта (реконструкції);

E_{np} — нормативний коефіцієнт приведення різночасних витрат.

У формулі (І.1):

$$T_{clos} = T_{clos} - t_p; \quad (І.2)$$

$$T'_{clos} = t_p. \quad (І.3)$$

Для ліній електропередачі значення коефіцієнта дефектності ЛЕП кд, що характеризує відносну величину дефектних елементів ЛЕП, треба порівнювати з граничним значенням частки об’єкта, що підлягає заміні під час ремонту ЛЕП. При перевищенні коефіцієнтом дефектності ЛЕП значення граничного коефіцієнта кдгр доцільне будівництво нової ЛЕП замість капітального ремонту (реконструкції) старої.
Додаток К
до розділу 7 нормативного документа «Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних електричних мереж напругою 0,38—20 кВ з повітряними лініями електропередачі» (рекомендований)

Принципи ймовірнісного розрахунку періодичності та обсягів капітальних ремонтів ПЛ

Проведення капітального ремонту і технічного обслуговування ПЛ забезпечує відновлення первісних експлуатаційних показників і параметрів ПЛ, її елементів, тобто збереження нормального технічного стану в межах, передбачених проектом ПЛ і нормативною документацією, що визначає припустимі значення параметрів і зносу елементів ПЛ. Таким чином, капітальний ремонт ПЛ, його періодичність і обсяг виконуваних у процесі ремонту робіт забезпечують надійність ПЛ як електроустановки і надійність електропостачання по цій ПЛ споживачів. Періодичність технічного обслуговування, критерії припустимого зносу елементів ПЛ установлено на основі великого досвіду експлуатації — часто застосовувам на практиці методу послідовних наближень. Разом з тим ряд основних критеріїв визначено шляхом розрахунків на міцність з урахуванням швидкості зносу матеріалів і забезпеченням необхідних коефіцієнтів запасу. Ці розрахунки вичерпно викладені в ПУЕ, нормах технологічного проектування, а також у технічній літературі.

Обсяг і періодичність капітального ремонту тісно пов’язано з надійністю конкретними кількісними залежностями. Оптимальні значення обсягу і періодичності капітальних ремонтів ПЛ повинні визначатися на основі мінімізації суми наступних витрат з урахуванням збитків (у енергопостачальної компанії/організації, у споживача електроенергії). Періодичність і обсяг капітального ремонту ПЛ, для якого встанов-
лена (визначено) функцію відмовлення у часі, визначаються таким чином, щоб максимум ефективності застосовуваної системи капітальних ремонтів:

$$\max \varepsilon = \min \sum_{i=1}^{t_{ca}} Z_i \left(1 + E_{H,n}\right)^{-t}, \quad (K.1)$$

de ε — надійність ПЛ; t — термін служби ПЛ; Z_i — наведені витрати на ПЛ у рік з урахуванням збитків від перерив електропостачання при відмові (капітальному ремонту); $E_{H,n}$ — нормативний коефіцієнт приведення різночасних витрат.

У Z_i входять збиток, капітальні вкладення на ПЛ і річні поточні витрати.

Оскільки в умовах експлуатації вже спорудженої ПЛ капітальних вкладення не залежать від обраної системи капітального ремонту, варіанти будуть розрізнятися тільки значеннями річних поточних витрат. Річні поточні витрати будуть змінюватися для кожного варіанту за роками експлуатації, оскільки термін служби до першого капітального ремонту відрізняється від міжремонтних періодів і, крім того, надійність ПЛ під час експлуатації змінюється.

У результаті вихідний вираз для цільової функції визначення максимальної ефективності системи капітального ремонту ПЛ буде мати вигляд

$$F = \min \left| 3_0 \sum_{i=1}^{t_{ca}} \frac{\alpha_i}{\left(1 + E_{H,n}\right)^t} + 3_k \sum_{i=1}^{t_{ca}} \frac{\beta_i}{\left(1 + E_{H,n}\right)^t} \right|, \quad (K.2)$$

de 3_0 — витрати, пов'язані з однією відмовою ПЛ; 3_k — витрати на проведення одного капітального ремонту ПЛ; α_i — число відмов ПЛ в t-му році; β_i — число капітальних ремонтів ПЛ в t-му році.

При відомій функції і параметрах потоку відмов ПЛ число її відмов в t-му році може бути визначене як

$$\alpha_i = \int_{t-1}^{t} \omega_i(t) \, dt = \int_{t-1}^{t} \omega \left(T'_n - [k - 1]T''_n\right) \, dt, \quad (K.3)$$
де $\omega_1(t)$ — функція потоку відмов ПЛ за весь період терміну служби; $\omega(t)$ — функція параметра потоку відмов ПЛ у інтервалі часу від введення в експлуатацію до першого капітального ремонту; T'_p — термін служби ПЛ до першого капітального ремонту; T''_p — міжремонтний термін служби ПЛ; k — порядковий номер капітального ремонту ПЛ.

Значення $\omega(t)$ може бути прийнято усередненням характеристик або накопиченням даних по відмовах у конкретній енергопостачальній компанії/організації для однорідної сукупності ПЛ. Очевидно, останні дані можуть бути отримані при систематичному обліку відмов ПЛ та їх елементів за тривалий період часу. Можуть бути використані дані декількох енергопостачальних компаній/організацій одного регіону, що характеризуються в цілому однаковими умовами експлуатації.

Термін служби ПЛ до першого капітального ремонту можна визначити так:

$$T'_p = \arg \omega(t) \text{ при } \omega(t) = \omega_{\text{max}},$$

де ω_{max} — найбільше значення параметра потоку відмов ПЛ, при досягненні якого обов'язково проведення капітального ремонту.

Міжремонтний термін служби ПЛ визначається так:

$$T''_p = T'_p - \arg \omega(t) \text{ при } \omega(t) = \omega_{\text{min}},$$

де ω_{min} — найменше значення параметра потоку відмов ПЛ, яке забезпечується проведенням капітального ремонту.

Значення ω_{min} досягається шляхом заміни елементів ПЛ (ізоляторів, арматури, дерев'яних деталей), ремонту проводу, заміни ділянок троса, що вимагають відбраковування до моменту ремонту, або тих, які вимагають його в міжремонтний період.

У загальному віді, коли під час капітального ремонту виробляється заміна частини елементів, ω_{min} може бути виражена рівнянням

$$\omega_{\text{min}} = N \int_{\lambda_{\text{true}}}^{\lambda} f(\lambda) \lambda d\lambda + Nn\lambda_0.$$
Перший з доданків у формулі (К.6) характеризує загальну інтенсивність відмов елементів ПЛ, що залишилися після заміни дефектних, а друге — сумарну інтенсивність відмов нововстановлених елементів.

У формулі: \(N \) — число опор ПЛ; \(\lambda \) — поточне значення інтенсивності відмов; \(\lambda_0 \) — початкове значення інтенсивності відмов елементів даного типу; \(\lambda_1 \) — граничне значення інтенсивності відмов елементів даного типу (критерій заміни); \(n \) — число замінних на ПЛ елементів даного типу, зумовлене як

\[
n = N \int_{\lambda_1}^{\lambda_{\text{max}}} f(\lambda) d\lambda, \quad (K.7)
\]

оскільки в діапазон \(\lambda_1 \rightarrow \lambda_{\text{max}} \) попадають практично всі елементи даного типу, а загальна кількість їх відома з паспортних даних ПЛ.

При відомому (знайденому) \(\lambda_1 \) для даного \(n \) може бути визначене \(\omega_{\text{min}} \).

Значення міжремонтного терміну визначається за формулою (K.5),

\[
\omega_{\text{min}} = N \left[\int_{\lambda_{\text{min}}}^{\lambda_1} f(\lambda) \lambda d\lambda + n \lambda_0 \right]. \quad (K.8)
\]

Значення числа відмов ПЛ у \(t \)-му році визначається як

\[
\alpha_t = N \left\{ a_0 + a_1 \left[(t - kT_{\Pi}^* + T_{\Pi}^*) - 0.5 \right] +
+ a_2 \left[(t - kT_{\Pi}^* + T_{\Pi}^*)^2 + 0.33 - (t - kT_{\Pi}^* + T_{\Pi}^*) \right] \right\}. \quad (K.9)
\]

При аналізі показників, що входять у цільову функцію, необхідно визначити складові сумарних витрат на одну відмову (або капітальний ремонт) ПЛ:

\[
Z_o = Y_{n,o} + Z_{\text{AB}} + Y_{\text{EO}}, \quad (K.10)
\]

де \(Y_{n,o} \) — збиток споживача від перерв у електропостачанні при відмові ПЛ:
$$Y_{п,о} = (y_1 + t_b y_2) \frac{T_{\text{max}} P_{\text{max}}}{8760} ;$$

К.11

tут y_1 — питомий збиток споживача, пропорційний відключенній потужності, грн/кВт; y_2 — питомий збиток споживача, пропорційний недовідпустці електроенергії, грн/(кВт·ч); T_{max} — число годин використання; P_{max} — максимальне навантаження ПЛ; t_b — середній час відновлення електропостачання при відмові ПЛ, год.

Витрати на аварійно-відбудовний ремонт $Z_{\text{ав}}$ при відмові ПЛ визначаються прямими витратами, пов'язаними з заміною елементів (іх постановою, відновленням геометричних розмірів), і враховують усі матеріальні витрати з відновлення ПЛ при відмові.

Збиток енергопостачальної компанії/організації, викликаний недовідпуском електроенергії при відмові ПЛ,

$$Y_{c,o} = \frac{(E + a_p) KL + CL}{8760} t_b,$$

К.12

de K — капіталовкладення на 1 км ПЛ, грн.; a_p — норматив амортизаційних відрахувань на реновацію, відносних одиниць; L — довжина ПЛ, км; 3 — річний фонд заробітної плати експлуатаційного персоналу, грн/км; E — норматив ефективності капіталовкладень.

При капітальному ремонту ПЛ

$$Z_K = Y_{п,п} + Z_{к,p}.$$

К.13

Збиток споживача від перерв у електропостачанні на час капітального ремонту ПЛ

$$Y_{п,п} = y_{п,п} \frac{T_{\text{max}} P_{\text{max}}}{8760 M} t_{к,p} nL,$$

К.14

de $t_{к,p}$ — тривалість капітального ремонту ПЛ при роботі однієї бригади й обсязі ремонту $n = 1$; $y_{п,п}$ — питомий збиток споживача від недовідпустки електроенергії на час капітального ремонту ПЛ; M — число ремонтних бригад, що працюють на ПЛ.
Прямі витрати на капітальний ремонт ПЛ

\[3_{к,р} = 3_{к,р} nL, \quad (К.15) \]

де \(3_{к,р} \) — вартість капітального ремонту 1 км ПЛ при обсязі ремонту \(n = 1 \).

Реалізація викладеної вище методики тим краща, чим повніше накопичені дані про число відмов елементів ПЛ і ПЛ в цілому, про види й обсяги конкретних робіт на ПЛ різного виконання і класу напруги.
Державне Донбаське підприємство з пуску, налагодженню, удосконаленню технології та експлуатації електростанцій і мереж

НОРМАТИВНИЙ ДОКУМЕНТ

МЕТОДИЧНІ ВКАЗІВКИ З ОБЛІКУ ТА АНАЛІЗУ У ЕНЕРГОСИСТЕМАХ ТЕХНІЧНОГО СТАНУ РОЗПОДІЛЬНИХ МЕРЕЖ НАПРУГОЮ 0,38-20 КВ З ПОВІТРЯНИМИ ЛІНІЯМИ ЕЛЕКТРОПЕРЕДАВАННЯ

Директор ДП "ДонОРГРЕС" Ткачов В.І.
Відповідальний виконавець Потребич О.А.

Нормоkontroler

Редактор

Горлівка-2005
Ключові слова: технічний стан, об’єкти електричних мереж, система експлуатації, дефект елемента об’єкта, енергопостачальна компанія/підприємство.

Технічне редагування, верстку виконав ГП «Науково-інженерний енергосервісний центр» інституту «Укрсільенергоінпроект» Мінпаливенерго України
04112 Київ-112, вул. Дорогожицька, 11/8, тел. 205-49-38

Видавець: ОЕП «ГРІФРЕ»
01001, м. Київ, вул. Б. Хмельницького, 4.
Тел./ факс: (044) 249-10-16
Свідоцтво про внесення суб’єкта видавничої справи до Державного реєстру видавців, виготівників і розповсюджувачів видавничої продукції
ДК № 1435 від 18.07.03 р.

Віддруковано з готових позитивів у ДП «Друкарня Державного управління справами»
01008, м. Київ, вул. Шовковична, 4а.
Формат 60х84/16. Об’єм 5,81 ум. др. арк.
Зам. 515. Наклад 50 пр. 2005 р.